2017 Summer Camp Analysis Syllabus

Instructor: Professor Ting Zhou

e-mail: t.zhou@neu.edu

Tentative Schedule of Topics
Week 1
Introduction and Overview; Exponential function e^x ; e^{rx} as an eigen-function of $\frac{d}{dx}$; Differen- tial equations; Oscillation, trigonometric functions and complex exponential e^z ; Mass-Spring- Dashpot model and 2nd order differential equations;
Week 2
Input-Response scheme; Exponential Response Formula (ERF); Complex ERF; Resonance (Research Project); Impulse and Step input response;
Week 3
Fourier Series: Vector spaces and function spaces, inner product and orthonormal basis (im- portance of oscillation); Idea of superposition; Convergence of Fourier Series; Applications on heat transfer and resonance;
Week 4
Fourier Transform: Ideas (as generalization of Fourier coefficients and time-frequency rela- tion); Definition and formulas; Solving differential equations