LINEAR ALGEBRA HOMEWORK 5 - FRIDAY 8/4

LECTURER: BONG H. LIAN

Exercise 0.1. Prove that for $A \in M_{n,n}$

$$\det A^T = \det A$$
.

Thus it doesn't matter whether we think of det as a function of n row vectors or n column vectors.

(Hint: Clearly understand the cases n=2,3 first. Observe that $S_3 \to S_3$, $\sigma \mapsto \sigma^{-1}$, is a bijection.)

Exercise 0.2. Let $x, y \in M_{n,n}$. Recall that x, y are translates of each other iff there exists an invertible matrix g such that $y = g^{-1}xg$. Prove your assertions.

- (a) Suppose $\det x \neq \det y$. Can x, y be translates of each other, i.e. can [x] = [y]?
- (b) Suppose $\det x = \det y$. Does this imply that [x] = [y]?

Exercise 0.3. WRITE UP Let $x_0 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and let $[x_0]$ be its translation class in $M_{2,2}$. Show that there is a surjective map

$$\pi:[x_0]\to\mathbb{P}^1:=the\ set\ of\ all\ lines\ in\ F^2$$

given by $x \mapsto \ker x$. Here, a line in F^2 is a one dimensional subspace of F^2 . Can you describe the set $\pi^{-1}(\ker x)$ for each x? Prove your assertions.

Exercise 0.4. Given that Δ and σ are respectively a hull and a beam in \mathbb{R}^n , verify that Δ^{\vee} and σ^{\vee} are respectively a hull and a beam in \mathbb{R}^n . Moreover, we have

$$(\Delta^{\vee})^{\vee} = \Delta, \ (\sigma^{\vee})^{\vee} = \sigma.$$

Exercise 0.5. WRITE UP Verify that if Δ is a perfect hull, then Δ^{\vee} is also perfect. This shows that perfect hulls come in pairs!

Exercise 0.6. If Δ is a perfect hull, prove that the interior Δ° of Δ , i.e. the subset of points in Δ not on its bounding hyperplanes, contains exactly one integral point, namely the origin 0.

Exercise 0.7. Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2,2}$, and let t be a variable. Write down the polynomial function $\det(A - tI) \in F[t]$. What is its degree? What is the coefficient of the highest power of t and the lowest power of t for this polynomial? Generalize your answers to $n \times n$ matrices.

Exercise 0.8. WRITE UP Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in M_{2,2}(\mathbb{C})$. Find an invertible matrix B such that $B^{-1}AB$ is upper triangular.