LINEAR ALGEBRA HOMEWORK 6 – DUE TUESDAY 8/8

LECTURER: BONG H. LIAN

Throughout this homework, take $F = \mathbb{C}$, $x \in \text{End } F^n \equiv M_{n,n}(F)$, and $V = F^n$. You should try to write clean and short proof as much as possible. The level of clarity demonstrates your level of true undertanding of the problem.

Exercise 0.1. WRITE UP Let Δ_1, Δ_2 be hulls in \mathbb{R}^n containing 0. Show that if

$$\Delta_1 \subset \Delta_2 \Longrightarrow \Delta_1^{\vee} \supset \Delta_2^{\vee}.$$

Conclude that if a hull Δ in \mathbb{R}^n contains a **ball**, i.e. $\{x \in \mathbb{R}^n | x \cdot x \leq \lambda\}$ for some $\lambda > 0$, then Δ^{\vee} must be contained in a ball in \mathbb{R}^n .

Definition 0.2. Let $x \in \text{End } V$. We call $\lambda \in F$ a root of $p_x(t)$ (or simply a root) if

$$p_x(\lambda) = \det(x - \lambda I) = 0$$

We call x a **potent** map if $(x - \lambda I)^k = 0$ for some k > 0 and some $\lambda \in F$. In this case, we call λ a potent root of x.

Recall that x has a **diagonal form** (DF) if x can be translated to a diagonal matrix, i.e. $g^{-1}xg$ is diagonal for some invertible g. Equivalently, there is a basis (v) of V such that the matrix m(x) in this basis is diagonal.

Exercise 0.3. Let $x \in \text{End } V$ be a potent map. Prove that (a) if $\lambda = 0$ is a potent root of x then I + x is invertible. (Hint: If x were a number, what can you say about $\frac{1}{1+x}$ from calculus?) (b) x has exactly one potent root λ . Hence we say that x is λ -potent. (c) x is invertible iff its potent root is nonzero. (d) Any positive power x^p is potent. (e) If x is ADF, then x is a multiple of I_n . (f) If x is 1-potent and if x is ADF, then $x = I_n$.

More generally for $x \in \text{End } V$, we say that $v \in V$ is a λ -potent vector of x, if for some k > 0

$$(x - \lambda I)^k v = 0.$$

Put

 $V_{\lambda} := \{ v \in V | v \text{ is } \lambda \text{-potent vector of } x \}.$

We call this **the** λ -**potent space** of x. If $V_{\lambda} \neq (0)$, we call λ a potent root of x. Note that x is λ -potent map iff $V = V_{\lambda}$. Beware that we use the term 'potent' for maps, vectors, and spaces, and each use is different though they are all closely related.

Exercise 0.4. WRITE UP Clearly, $V_{\lambda} \supset \ker(x - \lambda I)$. If x is ADF, then how is each V_{λ} related to $\ker(x - \lambda I)$? Is the converse of your assertion true? Prove all your assertions.

Exercise 0.5. Let $x = \begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$. Find a basis (v) of $V = F^2$ such that the matrix $(m(x)_{ij})$ of x in this basis is UTF (upper triangular form).