13. *p*-abic numbers (05 August 2019).

1. Definition 1. A sequence $\{\xi_n\}_{n=1,2,3,\dots}$ of points in \mathbb{Q} is called *fundamental* if

 $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{Z}_+ \; \text{ such that } \; \forall m, n \ge n_0 \; \text{ one has } \; |\xi_m - \xi_n| < \varepsilon.$

2. How to construct \mathbb{R} from \mathbb{Q} ?

Real numbers are constructed as *classes of equivalence* of sequences $\{\xi_n\}_{n=1,2,3,...}$ of rational numbers.

Definition 2. A sequence $\{a_n\}_{n=1,2,3,\dots}$ converges to zero if

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{Z}_+$$
 such that $\forall n \ge n_0$ one has $|\xi_n| < \varepsilon$.

Definition 3. Two sequences $\{\xi_n\}_{n=1,2,3,\dots} \subset \mathbb{Q}$ and $\{\xi'_n\}_{n=1,2,3,\dots} \subset \mathbb{Q}$ are equivalent if the sequence $\{a_n\}_{n=1,2,3,\dots}, a_n = \xi_n - \xi'_n$ converges to zero.

Question. What is $|\cdot|$ here?

3. *p*-adic metric on rationals. Fix prime *p* and let for $m \in \mathbb{Z}$ define

$$\nu_p(m) = \max\{\nu \in \mathbb{Z}_+ : p^{\nu} | m\}.$$

Definition 4. *p*-adic metric:

$$|\xi|_p = p^{\nu_p(b) - \nu_p(a)}$$
 if $\xi = \frac{a}{b} \in \mathbb{Q}$, and $|0|_p = 0$.

- 4. Properties of *p*-adic metric.
 - 1) $|\xi|_p = 0 \iff \xi = 0;$
 - 2) triangle inequality

$$|\xi + \eta|_p \le \max(|\xi|_p, |\eta|_p) \le |\xi|_p + |\eta|_p;$$

3) $|\xi \cdot \eta|_p = |\xi|_p \cdot |\eta|_p$.

- 5. **Definition 5.** $f : \mathbb{Q} \to \mathbb{R}$ is a *metric* if
 - 1) $f(\xi) \ge 0$ and $f(\xi) = 0 \iff \xi = 0;$
 - 2) triangle inequality

$$f(\xi + \eta) \le f(\xi) + f(\eta);$$

3) $f(\xi \cdot \eta) = f(\xi) \cdot f(\eta).$

6. **Theorem.** (Ostrowski) The only non-trivial metrics on \mathbb{Q} are $|\cdot|^{\alpha}$ where $0 < \alpha \leq 1$ and $|\cdot|_{p}^{\alpha}$, where p is a prime and $\alpha > 0$.

- 7. What happens in \mathbb{Q}_p ?
- a. All the triangles have two equal edges.
- b. If two disks intersect then one one disk is inside another one.
- c. Every inner point of a disk is its center.
- d. $\sum_{n=1}^{\infty} \xi_n$ converges $\iff \xi_n \to 0, n \to \infty$.