8. Geometry of Continued Fractions (26 July 2019).

We suppose for simplicity that $\alpha > 0$ and $\alpha \notin \mathbb{Q}$.

1. Klein polygons. In the first quadrant $\mathbb{R}^2_{++} = \{x \ge 0, y \ge 0\}$ we consider the line

$$y = \alpha x$$

and the angles

$$\varphi_{-} = \{ 0 \le y \le \alpha x \}, \quad \varphi_{+} = \{ 0 \le x \le y/\alpha \}.$$

Consider the *convex hulls*

conv
$$(\varphi_{\pm} \cap \mathbb{Z}^2)$$

and *non-trivial* parts of the boundaries

$$\mathcal{K}_{\pm} = \partial \operatorname{conv} \left(\varphi_{\pm} \cap \mathbb{Z}^2 \right).$$

Infinite broken lines \mathcal{K}_{\pm} are called Klein polygons.

2. Separating line for a set $\Omega \subset \mathbb{R}^2$ is a line ℓ such that $\ell \cap \Omega \neq \emptyset$ and Ω completely belongs to one of half-planes with boundary ℓ . If Ω is a polygon and there exists more than one separating line passing through $x \in \Omega$, then x is a vertex of Ω .

3. **Theorem.** Vertices of \mathcal{K}_{\pm} are of the form (q_{ν}, p_{ν}) and there are no other vertices.

4. Empty parallelogram. Consider parallelogram with integer vertices

(0,0), (a,b), (c,d), (a+c,b+d)

and area 1. Let the line $\{y = \alpha x\}$ divides this parallelogram into two parts. One of non-zero vertices belongs to one part and two other to another part. Then

a) all the vertices are on the boundary of \mathcal{K}_{\pm} ;

b) the lonely vertex is a vertex of \mathcal{K}_{\pm} .

Compare with the following fact we discussed: if $\alpha \in \left[\frac{a}{b}, \frac{c}{d}\right]$ and the mediant fraction $\frac{a+c}{b+d}$ falls into $\left[\alpha, \frac{c}{d}\right]$, then $\frac{a}{b}$ is a convergent to α .

5. Best approximations. A vector $(q, p) \in \mathbb{Z}^2$ is called *best approximation* (B.A) if

$$|q\alpha - p| = \min_{(q',p') \in \mathbb{Z}^2 \setminus \{(0,0)\}: 1 \le q' \le q} |q'\alpha - p'|.$$

Theorem. A vector $(q, p) \in \mathbb{Z}^2$ is B.A. if and only if it is a vertex of \mathcal{K}_{\pm} and hence a continued fraction convergent to α .

6. Legendre theorem again. Prove that if (p,q) = 1 and

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2} \tag{1}$$

then $\frac{p}{q}$ is a convergent to α .

7. Fatou Theorem. If (p,q) = 1 and $\left| \alpha - \frac{p}{q} \right| < \frac{1}{q^2}$, then either $\frac{p}{q}$ is a convergent to α or is of the form $\frac{p}{q} = \frac{p_n \pm p_{n-1}}{q_n \pm q_{n-1}}$ for some n.

7. Minkowski Theorem. For a point $\mathbf{z} = (q, p)$ consider the point

$$\boldsymbol{z}^* = (q, p + 2(\alpha q - p)).$$

Let \boldsymbol{z} be a vertex of \mathcal{K}_{\pm} . Then (1) holds if and only if \boldsymbol{z}^* is strictly between the Klein polygon and the line $y = \alpha x$.