LINEAR ALGEBRA HOMEWORK 1

LECTURER: BONG H. LIAN

Exercise 0.1. WRITE UP by July 19, 2019 Recall that for $a, b \in \mathbb{Z}$, $a \neq 0$, the fraction b/a is defined to be the set of all equations

nx = m, $n, m \in \mathbb{Z}$, $n \neq 0$, s.t. nb = ma.

Prove that two such sets b/a = b'/a' iff ba' = b'a.

Prove that $b/a \cap b'/a' = \emptyset$ iff $ba' \neq b'a$.

Prove that the map $\mathbb{Z} \to \mathbb{Q}$, $n \mapsto n/1$ is injective. Therefore, we can treat \mathbb{Z} is a subset of \mathbb{Q} by treating set n/1 as the integer n. Prove that this map is not surjective.

Prove that this map is not surjective.

Exercise 0.2. WRITE UP by July 19, 2019 Verify that the multiplication rule given by

 $\times : \mathbb{Q}^2 \to \mathbb{Q}, \ (b/a, b'/a') \mapsto b/a \times b'/a' := (bb')/(aa')$

is well-defined. Note that this rule generalizes the usual rule for multiplying integers, i.e. grouping apples. Therefore, the multiplication rule for \mathbb{Z} remains the same after we treat it as a subset of \mathbb{Q} . (See next exercise.)

Prove using this multiplication rule, that b/a is a solution to the equation ax = b. That is, $a \times b/a = b$.)

Prove that this is the only solution. That is, if b'/a' is another solution, then b'/a' = b/a.

Exercise 0.3. Write For $n \in \mathbb{Z}$, put $\iota(n) = n/1$. Verify the identities

 $\iota(1) = 1/1, \ \iota(nn') = \iota(n)\iota(n'), \ n, n' \in \mathbb{Z}.$

Also express $\iota(n+n')$ in terms of $\iota(n)$, $\iota(n')$.

Exercise 0.4. Let F be a field. For $X, Y, Z \in F^2$ and $\lambda, \mu \in F$, verify that V1. (X + Y) + Z = X + (Y + Z)V2. X + Y = Y + XV3. X + 0 = XV4. X + (-X) = 0V5. $\lambda(X + Y) = \lambda X + \lambda Y$ V6. $(\lambda + \mu)X = \lambda X + \mu X$ V7. $(\lambda \mu)X = \lambda(\mu X)$ V8. 1X = X. The same holds true for F^n .

Suggestion: Think about exactly what facts about F you need to use to prove each of these statements.