LINEAR ALGEBRA HOMEWORK 2 - DUE FRIDAY 7/26

LECTURER: BONG H. LIAN

While you should always try all assigned problems, you should write up only the ones you are asked to write up.

Exercise 0.1. Assume we have a field \mathbb{C} with properties $(\mathbb{C}1)$ - $(\mathbb{C}3)$. Use N1-N9 to verify that for $z, w \in \mathbb{C}$, z + w = 0 iff w = -z. Now show that for $x, y \in \mathbb{R}$

$$-(x+iy) = -x+i(-y).$$

In fact, in any field F, N1-N9 imply that -(a+b) = (-a) + (-b) and -(ab) = (-a)b.

Assume U, V, W are F-vector spaces.

Exercise 0.2. As in class, let $\operatorname{Hom}(U, V) \equiv \operatorname{Hom}_F(U, V)$ be the set of *F*-linear maps $U \to V$. Consider the MMC map

$$\Phi: M_{k,l} \to \operatorname{Hom}(F^l, F^k), A \mapsto L_A$$

Treat the matrix space $M_{k,l}$ as a F-vector space as usual. Show that there is just one way to make $\operatorname{Hom}(F^l, F^k)$ a F-space, such that Φ is linear. More generally, how would you make $\operatorname{Hom}(U, V)$ a F-vector space?

Exercise 0.3. If $f : U \to V$ and $g : V \to W$ are linear maps, verify that their composition $gf \equiv g \circ f : U \to W$ is also linear.

Exercise 0.4. Let Iso(V, V) be the set of isomorphisms (i.e. linear bijections) $\phi: V \to V$, and Iso(V, W) the set of isomorphisms $f: V \to W$. Suppose $f_0 \in \text{Iso}(V, W)$. Show that the map

$$T: \operatorname{Iso}(V, V) \to \operatorname{Iso}(V, W), \ \phi \mapsto f_0 \circ \phi$$

bijects, by writing the inverse map.

Exercise 0.5. Describe sol(E) to the following system E in \mathbb{R}^4 , using row reduction and then giving an isomorphism $f : \mathbb{R}^{\ell} \to \ker L_A$ (including specifying the appropriate ℓ), where A is the coefficient matrix

of the system:

$$x + y + z + t = 0$$

$$E_0: \quad x + y + 2z + 2t = 0$$

$$x + y + 2z - t = 0.$$

Replace the 0 on the right side of first equation by 1 to get a new inhomogeneous system E_1 , and then describe its solution set $sol(E_1)$ by writing down an explicit translation map.

Exercise 0.6. WRITE UP Let E be an n-variable F-linear system. Prove that

$$E \text{ is homogenous}$$

$$\Leftrightarrow \quad 0 \in sol(E)$$

$$\Leftrightarrow \quad sol(E) \text{ is } F \text{-subspace of } F^n.$$

Try to make your proof as simple as possible, say less than half a page.

Exercise 0.7. WRITE UP Let $F[x]_d$ be the F-subspace of F[x] consisting of all polynomials p(x) of degree at most d, i.e. the highest power x^n appearing in p(x) is at most x^d . Consider the map

$$L_{n,d} := (1 - x^2)(\frac{d}{dx})^2 - 2x\frac{d}{dx} + n(n+1)id : F[x]_d \to F[x]_d$$

for integer $n \ge 0$. Verify that $L_{n,d}$ is F-linear. Describe ker $L_{n,d}$ by solving the linear equation

$$L_{n,d}(f) = 0$$

for n = 0, 1, 2, say by giving a basis of ker $L_{n,d}$. Equivalently, find $k \in \mathbb{Z}_{\geq 0}$ (which can depend on n, d) such that you can construct an *F*-isomorphism

$$f: F^k \to \ker L_{n,d}.$$