Homework 2/ Algebraic combinatorics

- (1) Write down the definition of a subgroup of a group.
- (2) Let H be a subgroup of G. Prove that G/H is a group under the induced group operation from G, if and only if H is a normal subgroup of G.
- (3) Let $\phi: G \to H$ be a group homomorphism. Prove that
 - (a) $Im(\phi)$, the image of ϕ , is a subgroup of H.
 - (b) $Ker(\phi)$, the kernel of ϕ , is a normal subgroup of G.
 - (c) $G/Ker(\phi) \cong Im(\phi)$ as groups.