Yau Tsinghua Mathcampes
 2023清华大学丘成侗中学生

ANALYSIS AND NUMBER THEORY SUMMER 2023 HOMEWORK NO． 1

1．Problems

Problem 1．Let $a_{1}, a_{2}, \ldots, a_{n}>0$ and $b_{1}, b_{2}, \ldots, b_{n}>0$ ．Show that

$$
\sqrt[n]{\prod_{i=1}^{n} a_{i}}+\sqrt[n]{\prod_{i=1}^{n} b_{i}} \leq \sqrt[n]{\prod_{i=1}^{n}\left(a_{i}+b_{i}\right)}
$$

Problem 2．Show that the sequence $\left(f_{n}\right)_{n \geq 1}$ defined by $f_{n}=\left(1+\frac{1}{n}\right)^{n+1}$ is decreasing．

Problem 3．Show that if $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$ ，then

$$
n(n+1)^{1 / n}<n+H_{n}, n>1
$$

and

$$
(n-1) n^{-1 /(n-1)}<n-H_{n}, n>2 .
$$

Problem 4．Let $e_{n}=\sum_{k=0}^{n} \frac{1}{k!}, n \geq 1$ ．Consider the sequence $E_{n}=e_{n}+\frac{1}{n!n}$ ． Show that $E_{n}>e$ and deduce that e is irrational．

Problem 5. Find the following limits:
(i) $\lim _{n \rightarrow \infty} n\left(\log 2-\sum_{k=1}^{n} \frac{1}{n+k}\right)$
(ii) $\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{k=1}^{n} \sqrt{1+\frac{1}{n+k}}\right)^{n}$.

Problem 6. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive reals such that $\sum_{n \geq 1} a_{n}^{3}$ converges. Show that the series $\sum_{n \geq 1} \frac{a_{n}}{n}$ converges also.

Problem 7. Let $0<x_{1}<1$ and $x_{n+1}=x_{n}\left(1-x_{n}\right)$, for $n=1,2,3 \ldots$ Show that $\lim _{n \rightarrow \infty} n x_{n}=1$ and study the convergence of the series $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} x_{n}^{2}$.

Problem 8. Let $\left(a_{n}\right)_{n \geq 1}$ be a decreasing sequence of positive reals such that the series $\sum_{n=1}^{\infty} a_{n}$ converges. Show that $\lim _{n \rightarrow \infty} n a_{n}=0$.

Problem 9. Show that if the series $\sum_{n=1}^{\infty} \frac{1}{p_{n}}$ is convergent, where $p_{1}, p_{2}, \ldots, p_{n}$ are positive real numbers, then the series

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(p_{1}+p_{2}+\ldots+p_{n}\right)^{2}} \cdot p_{n}
$$

is also convergent.
Problem 10. Determine, with proof, whether the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1.8+\sin n}}
$$

converges or diverges.

