

ANALYSIS AND NUMBER THEORY
SUMMER 2023
HOMEWORK NO． 2

1．Problems

Problem 1．Let $f(x)=\sum_{k=1}^{n} a_{k} \sin (k x)$ ，with $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}, n \geq 1$ ．Prove that if $f(x) \leq|\sin x|$ ，for all $x \in \mathbb{R}$ ，then

$$
\left|\sum_{k=1}^{n} k a_{k}\right| \leq 1 .
$$

Problem 2．Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real function．Prove or disprove each of the following statements．
（a）If f is continuous and range $(f)=\mathbb{R}$ then f is monotonic．
（b）If f is monotonic and range $(\mathrm{f})=\mathbb{R}$ then f is continuous．
（c）If f is monotonic and f is continuous then range $(\mathrm{f})=\mathbb{R}$
Problem 3．（a）If f is a C^{2} function on an open interval，prove that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x) .
$$

（b）Suppose that $f(x)$ is defined on an open interval containing x ，and $f(x)$ is three times differentiable on this interval．Show that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-3 f(x)+3 f(x-h)-f(x-2 h)}{h^{3}}=f^{\prime \prime \prime}(x) .
$$

Problem 4. (i) Show that $e^{x} \geq x+1$ for each $x \in \mathbb{R}$, with equality if and only if $x=0$.
(ii) Let $a_{k}>0$ for $k=1,2, \ldots, n$, and let $A=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$ be the arithmetic mean of these numbers. For each k, put $x_{k}=\frac{a_{k}}{A}-1$ in the inequality from (i), and deduce the arithmetic-geometric mean inequality:

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}
$$

Problem 5. (i) Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that the limits $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)$ exist and they are both finite. Show that $\lim _{x \rightarrow \infty} f^{\prime}(x)=$ 0 .
(ii) Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $\lim _{x \rightarrow \infty}\left(f(x)+f^{\prime}(x)\right)=$ 0. Show that $\lim _{x \rightarrow \infty} f(x)=0$.

Problem 6. Let f be an infinitely differentiable function from \mathbb{R} to \mathbb{R}. Suppose that, for some positive integer n,

$$
f(1)=f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\ldots=f^{(n)}(0)=0
$$

Prove that $f^{(n+1)}(x)=0$ for some $x \in(0,1)$.
Problem 7. Let α be a real number. Show that there does not exist a continuous real-valued function $f:[0,1] \rightarrow(0, \infty)$ such that

$$
\int_{0}^{1} f(x) d x=1, \int_{0}^{1} x f(x) d x=\alpha, \int_{0}^{1} x^{2} f(x) d x=\alpha^{2}
$$

Problem 8. Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function with continuous derivative such that $f(0)=f(1)=0$. Show that

$$
\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x \geq 12\left(\int_{0}^{1} f(x) d x\right)^{2}
$$

Problem 9. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions such that $f(x+1)=f(x)$ and $g(x+1)=g(x)$ for all real numbers x. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=\int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

Problem 10. (a) Consider the sequence $\left(x_{n}\right)_{n \geq 1}$ defined by

$$
x_{n}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+(-1)^{n} \frac{1}{n^{2}} .
$$

Show that x_{n} converges and assuming The Basel problem,

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\ldots+\frac{1}{n^{2}}\right)=\frac{\pi^{2}}{6}
$$

show that $\lim _{n \rightarrow \infty} x_{n}=\frac{\pi^{2}}{12}$.
(b) Show that the following version of Taylor's formula with integral remainder holds true:

$$
\log (1+x)=x-\frac{x^{2}}{2}+\ldots+(-1)^{n-1} \frac{x^{n}}{n}+(-1)^{n} \int_{0}^{x} \frac{t^{n}}{1+t} d t
$$

for all $n \geq 1$ and $x>-1$.
(c) Show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\frac{\log (1+x)}{x}, & x \in(0,1] \\ 1, & x=0\end{cases}
$$

is Riemann integrable.
(d) Show that

$$
\int_{0}^{1} \frac{\log (1+x)}{x} d x=\frac{\pi^{2}}{12}
$$

