Yau Tsinghua Mathcampes
2023 清华大学丘成桐中学生

ANALYSIS AND NUMBER THEORY
 SUMMER 2023
 HOMEWORK NO． 3

1．Problems

Problem 1．Show that：
（i）$\frac{6}{\pi^{2}}<\frac{\sigma(n) \varphi(n)}{n^{2}}<1, n \geq 1$ ．
（ii）$\sigma(n) \varphi(n) \geq n d(n), n \geq 3$ ．
（iii）$\sigma^{2}(n) \geq n d^{2}(n), n \geq 1$ ．
Problem 2．Show that for $x \geq 2$ ，

$$
\sum_{n \leq x} \frac{1}{n \log n}=\log \log x+B+O\left(\frac{1}{x \log x}\right)
$$

where B is a constant．
Problem 3．Show that for $x \geq 3$ we have

$$
\sum_{n \leq x}(\log n)^{2}=x \log ^{2} x-2 x \log x+2 x+O\left(\log ^{2} x\right) .
$$

Problem 4．Show that

$$
\sum_{i, j=1}^{n} \operatorname{gcd}(i, j)=\frac{n^{2} \log n}{\zeta(2)}+O\left(n^{2}\right) .
$$

Problem 5. Find all positive integers $n \geq 1$ such that $d(n)=\sqrt[3]{4 n}$.
Problem 6. Find $x \in(0,1)$ such that

$$
\sum_{n=1}^{\infty} \frac{x^{n} \varphi(n)}{1-x^{n}}=1
$$

Problem 7. Let $\left(a_{n}\right)_{n \geq 1}$ be an increasing sequence such that $a_{n+1}-a_{n}<2023$ for all $n \geq 1$. Show that the set of prime factors of the sequence a_{n} is infinite.

Problem 8. Given a positive integer a, prove that $\sigma(a m)<\sigma(a m+1)$ for infinitely many positive integers m.

Problem 9. Let k be a fixed integer greater than 1. Prove that there exists an integer n greater than 1 , and distinct integers $a_{1}, a_{2}, \ldots, a_{n}$ all greater than 1 , such that both $\sum_{j=1}^{n} a_{j}$ and $\sum_{j=1}^{n} \phi\left(a_{j}\right)$ are k th powers of a positive integer. Here ϕ denotes the Euler's totient function.

Problem 10. For a positive integer n, let $d(n)$ be the number of positive divisors of n, and let $\varphi(n)$ be the number of positive integers not exceeding n which are coprime to n. Does there exist a constant C such that

$$
\frac{\varphi(d(n))}{d(\varphi(n))} \leq C
$$

for all $n \geq 1$?

