（14）if 单大数数学科学系

Yau Tsinghua Mathcamp
 2023清华大学
 丘成相中学生

ANALYSIS AND NUMBER THEORY SUMMER 2023 LIST OF PROJECTS

CEZAR LUPU

1．An algebraic equation and Euler＇s Basel problem

Project．（a）Show that the following algebraic equation of degree n ，

$$
\binom{2 n+1}{1} x^{n}-\binom{2 n+1}{3} x^{n-1}+\binom{2 n+1}{5} x^{n-2}-\ldots=0
$$

has solutions $x_{k}=\cot ^{2} \frac{k \pi}{2 n+1}$ ，for $k=1,2, \ldots, n$ ．
（b）Show that

$$
\frac{1}{\sin x}>\frac{1}{x}>\cot x, x \in\left(0, \frac{\pi}{2}\right) .
$$

（c）Prove the inequality

$$
\frac{\pi^{2}}{6}\left(1-\frac{1}{2 n+1}\right)\left(1-\frac{2}{2 n+1}\right)<1+\frac{1}{2^{2}}+\ldots+\frac{1}{n^{2}}<\frac{\pi^{2}}{6}\left(1-\frac{1}{2 n+1}\right)\left(1+\frac{1}{2 n+1}\right) .
$$

(d) Deduce that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

2. Wallis' integral formula and Euler's Basel problem

Project. (a) Write the binomial series expansion of $\left(1-x^{2}\right)^{-1 / 2}$ near $x=0$.
(b) Derive the Taylor series expansion of $\arcsin x$ near $x=0$,

$$
\arcsin x=x+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \ldots \cdot(2 n-1)}{2 \cdot 4 \ldots \cdot(2 n)} \cdot \frac{x^{2 n+1}}{2 n+1} .
$$

(c) Explain why the series above converges uniformly on the interval $[-1,1]$.
(d) Derive the following equality

$$
\frac{\pi^{2}}{8}=1+\sum_{n=1}^{\infty} \frac{1}{2 n+1} \cdot \frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot(2 n)} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} t d t .
$$

(e) Prove the following Wallis integral formula:

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} t d t=\frac{2 \cdot 4 \cdot \ldots \cdot(2 n)}{1 \cdot 3 \cdot \ldots \cdot(2 n-1)} \cdot \frac{1}{2 n+1}, n \geq 1
$$

(f) Derive Euler's famous formula,

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} .
$$

3. Power series and Euler's Basel problem

Project. The Basel problem is one of the most famous problems in analysis and number theory and it concerns the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots
$$

The result was proved by Euler in 1734 and is given by
Theorem 3.1 (Euler). We have

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} .
$$

In this project you will be guided to obtain a proof of this result via generating functions.

First, prove that the function $y(x)=\arcsin ^{2} x$ verifies the second order initial value problem,

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}-2=0, y(0)=y^{\prime}(0)=0
$$

Second, when we look for the power series solution of the above initial value problem, $y(x)=\sum_{n \geq 0} a_{n} x^{n}$, prove that

$$
\arcsin ^{2} x=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(2 x)^{2 n}}{n^{2}\binom{2 n}{n}},|x| \leq 1
$$

Third, with a little bit of extra care, prove the convergence of the series above. Fourth, prove the following Wallis' formula,

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} t d t=\frac{\pi}{2^{2 n+1}}\binom{2 n}{n}
$$

Last but not least, combine all these previous steps, and derive the proof of the Basel problem.
4. Convex functions, Hermite-Hadamard inequality, and Stirling's APPROXIMATION FORMULA

Project. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. First, derive the Hermite-Hadamard integral inequality,

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

We can proceed in the following way:
Let $a, b \in \mathbb{R}, a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ be a convex function.
(i) Show that for all $a \leq x \leq y \leq z \leq t$ with $x+t=y+z$ we have the inequality

$$
f(x)+f(t) \geq f(y)+f(z)
$$

(ii) Show that the function $g:[a, b] \rightarrow \mathbb{R}, g(x)=f(x)+f(a+b-x), x \in[a, b]$ is nonincreasing on $\left[a, \frac{a+b}{2}\right]$, and nondecreasing on $\left[\frac{a+b}{2}, b\right]$.
(iii) Show that f is Riemann integrable.
(iv) Show that the function $h:[a, b] \rightarrow \mathbb{R}$ defined by $h(x)=f(a+b-x), x \in[a, b]$ is convex and

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} h(x) d x
$$

(v) Prove that the Hermite-Hadamard inequality holds true.

Furthermore, prove that:
(a) Show that

$$
\int_{k}^{k+1} \log x \geq \frac{\log k+\log (k+1)}{2}, k \geq 1
$$

(b) Show that

$$
\int_{k-1 / 2}^{k+1 / 2} \log x \leq \log k, k \geq 1
$$

(c) Consider the sequence

$$
a_{n}=\int_{1}^{n} \log x-\log 2-\ldots-\log (n-1)-\frac{1}{2} \log n, n \geq 1
$$

Show that a_{n} is increasing and $0 \leq a_{n} \leq \frac{1}{2} \log \frac{5}{4}$.
(d) Prove the following inequality:

$$
e \sqrt{n}\left(\frac{n}{e}\right)^{n} \geq n!\geq \sqrt{\frac{4}{5}} e \sqrt{n}\left(\frac{n}{e}\right)^{n}, n \geq 1
$$

(e) Prove the following formula due to Stirling:

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n} \cdot e^{-n} \sqrt{2 \pi n}}=1
$$

5. Limits of SEqUENCES OF FUNCTIONS AND THE IRRATIONALITY OF π

Project. Let $a, b, n_{1} \geq 1$ be integers, and consider the sequence of functions $f_{n} \rightarrow \mathbb{R} \rightarrow \mathbb{R}, f_{n}(x)=\frac{1}{n!} x^{n}(b x-a)^{n}$, and the sequence of integrals $\left(I_{n}\right)_{n \geq 1}$ defined by

$$
I_{n}=\int_{0}^{\pi} f_{n}(x) \sin x d x, n \geq 1
$$

(a) Show that if $u, v: I \rightarrow \mathbb{R}$ are functions n-times differentiable on I, then

$$
(u v)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(n-k)} v^{(k)}
$$

(b) Show that $f_{n}^{(k)}(0) \in \mathbb{Z}$ for all $k \geq 1$ and $n \geq 1$.
(c) Show that $f_{n}^{(k)}\left(\frac{a}{b}\right) \in \mathbb{Z}$ for all $k \geq 1$ and $n \geq 1$.
(d) Show that $\lim _{n \rightarrow \infty} I_{n}=0$.
(e) Show that if $\pi=\frac{a}{b}$, with $a, b \geq 1$ integers, then $I_{n} \in \mathbb{Z}-\{0\}$.
(f) Show that π is an irrational number.
6. An example of a function which is not differentiable anywhere:

Weierstrass function

Project. Let us consider the function $f_{1}: \mathbb{R} \rightarrow \mathbb{R}, f_{1}(x)=\frac{1-|2 x-2[x]-1|}{2}$ and the functions $f_{n}(x)=4^{-n+1} \cdot f_{1}\left(4^{n-1} x\right), x \in \mathbb{R}, n \geq 1$.
(a) Show that $0 \leq f_{1}(x) \leq \frac{1}{2}$, for all $x \in \mathbb{Z}$ and $f_{1}(x+1)=f_{1}(x)$, for all $x \in \mathbb{R}$.
(b) Show that the function $f(x)=\sum_{n=0}^{\infty} f_{n}(x), x \in \mathbb{R}$ is well defined and continuous.
(c) Show that the function f is not monotonic on any interval.
(d) Show that f is not differentiable at any point.
7. Evaluation of $\zeta(2)$ and the Representation of a number as sum of SQUARES

Project. Let $r(n)$ be the number of quadruples (x, y, z, t) of integers such that

$$
n=x^{2}+y^{2}+z^{2}+t^{2} .
$$

(a) Show that $r(0)=1$ and $r(n)=8 \sum_{m \mid n, 4 \nmid m} m, m>0$.
(b) Let $R(N)=\sum_{n=0}^{N} r(n)$. Show that $R(N)$ is asymptotic to the volume of the 4-dimensional ball, i.e.

$$
R(N) \sim \frac{\pi^{2}}{2} N^{2}
$$

(c) Evaluate $R(N)$ in terms of the function $\theta(x)=\sum_{m \leq x} m\left[\frac{x}{m}\right]$.
(d) Show that $\theta(x)=\frac{\zeta(2)}{2} x^{2}+O(x \log x)$ and deduce that

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} .
$$

8. Erdös' proof of Bertrand's Postulate

Project.

(a) Let $n>0$ and $r(p)$ be the non-negative integer such that

$$
p^{r(p)} \leq 2 n<p^{r(p)+1}
$$

Show that

$$
\prod_{n<p \leq 2 n} p\left|\binom{2 n}{n}\right| \prod_{p \leq 2 n} p^{r(p)}
$$

(b) Show that if $p>2$ and $\frac{2 n}{3}<p \leq n$, then

$$
p \nmid\binom{2 n}{n} .
$$

(c) Show that

$$
\prod_{p \leq n} p<2^{2 n}
$$

(d) Assume there is no prime p in between n and $2 n(n<p \leq 2 n)$. Prove that

$$
2^{2 n}<(2 n)^{\sqrt{2 n}+1} 2^{\frac{4}{3} n}
$$

which is impossible for sufficiently large n. Hence there exists at least one prime in between n and $2 n$ for sufficiently large n.

Applications.

(a) Find an upper bound for all the n 's satisfying the inequality in Problem 8(d). Deduce that there is at least one prime in between n and $2 n$ for any $n \geq 1$.
(b) Let p_{n} denote the n-th prime. Show that for $n>3$,

$$
p_{n}<p_{1}+p_{2}+\ldots+p_{n-1} .
$$

9. Bernoulli polynomials and generalized Euler-Maclaurin SUMMATION FORMULA

Project. We define the sequence of Bernoulli polynomials $B_{n}(x)$ and the Bernoulli numbers B_{n} as follows: we let $B_{0}(x)=B_{0}=1, B_{1}=-1 / 2$ and $B_{1}(x)=x+B_{1}$. We then let $B_{2}(x)=B_{2}+2 \int_{0}^{x} B_{1}(x) d x$, where B_{2} is such that $\int_{0}^{1} B_{2}(x) d x=0$, that is to say, $B_{2}=\frac{1}{6}$ and $B_{2}(x)=x^{2}-x+1 / 6$. In general, assuming we have defined $B_{n}(x)$, we let $B_{n+1}(x)=B_{n+1}+(n+1) \int_{0}^{x} B_{n}(t) d t$, where B_{n+1} is such that $\int_{0}^{1} B_{n+1}(x) d x=0$.
(a) For $n \neq 1$, show that $B_{n}(1)=B_{n}(0)=B_{n}$. Conclude that the function $x \mapsto B_{n}(\{x\})$ is 1-periodic and continuous. In addition, show that $\int_{0}^{x} B_{n}(\{t\}) d t=$ $\left(B_{n+1}(\{x\})-B_{n+1}\right) /(n+1)$ for all $n \geq 1$ and $x \in \mathbb{R}$.
(b) Given integers $a<b$ and $k \geq 1$, and a smooth function f, prove that

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(x) d x+\sum_{l=1}^{k} \frac{(-1)^{l} B_{l}}{l!}\left(f^{(l-1)}(b)-f^{(l-1)}(a)\right)+(-1)^{k+1} \int_{a}^{b} \frac{B_{k}(\{x\}) f^{(k)}(x)}{k!} d x
$$

(c) Let $m \in \mathbb{Z}$ and $k \in \mathbb{Z}_{>0}$. Show that

$$
B_{k}(\{x\})=-\frac{k!}{(2 \pi i)^{k}} \sum_{m \neq 0} \frac{e^{2 \pi i m x}}{m^{k}}, k \geq 2 .
$$

(d) For $k \geq 1$, show that $B_{2 k+1}=0$ and

$$
B_{2 k}=\frac{(-1)^{k-1}(2 k)!}{2^{2 k-1} \pi^{2 k}} \sum_{m \geq 1} \frac{1}{m^{2 k}}=\frac{(-1)^{k-1}(2 k)!\zeta(2 k)}{2^{2 k-1} \pi^{2 k}}
$$

where $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re}(s)>1$ is the Riemann zeta function.
(e) Show that for $n \geq 1$, we have

$$
\sum_{n \leq N} \frac{1}{n}=\log N+\gamma+\frac{1}{2 N}-\frac{1}{12 N^{2}}+O\left(1 / N^{4}\right)
$$

10. An elementary problem equivalent to the Riemann hypothesis

Project. The Riemann hypothesis is one of the most important problems in mathematics concerning the non-trivial zeros of the zeta function,

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re} s>1
$$

It states that all non-trivial zeros satisfy $\operatorname{Re} s=\frac{1}{2}$. In this aspect, there are many equivalent statements. One of them is given by the following:

$$
(L): \sigma(n)=\sum_{d \mid n} d \leq H_{n}+\exp \left(H_{n}\right) \log \left(H_{n}\right),
$$

for all $n \geq 1$. Here H_{n} stands for the n-th harmonic number. The statement (L) is a modification of an earlier result of Robin which states that the Riemann hypothesis is equivalent with

$$
\sigma(n)<e^{\gamma} n \log \log n
$$

for all $n \geq 5041$. Moreover, Robin was able to prove unconditionally that

$$
\sigma(n)<e^{\gamma} n \log \log n+0.6482 \frac{n}{\log \log n}, n \geq 3
$$

Thus, we assume the following two results of Robin,
Theorem 10.1. If the Riemann hypothesis is true, then for each $n \geq 5041$ we have

$$
\sigma(n) \leq e^{\gamma} n \log \log n
$$

where gamma is the Euler-Mascheroni constant.
and

Theorem 10.2. If the Riemann hypothesis is false, then there exists constants $0<$ $\beta<\frac{1}{2}$ and $C>0$ such that

$$
\sigma(n) \geq e^{\gamma} n \log \log n+\frac{C n \log \log n}{(\log n)^{\beta}}
$$

holds for infinitely many n.
Now, in order to prove that our inequality (L) is equivalent to the Riemann hypothesis, you are asked to prove the following:

Lemma 10.3. For $n \geq 3$, we have

$$
\exp \left(H_{n}\right) \log \left(H_{n}\right) \geq e^{\gamma} n \log \log n
$$

Lemma 10.4. For $n \geq 20$, we have

$$
H_{n}+\exp \left(H_{n}\right) \log \left(H_{n}\right) \leq e^{\gamma} n \log \log n+\frac{7 n}{\log n}
$$

Finally, deduce that the inequality (L) is equivalent to the Riemann hypothesis.

11. Dirichlet's hyperbola method and applications

Project.

(a) Prove the Dirichlet hyperbola formula. Let f and g be two arithmetic functions and let $F(x)=\sum_{n \leq x} f(n)$ and $G(x)=\sum_{n \leq x} g(n)$. Show that for any $1 \leq y \leq x$,

$$
\sum_{n \leq x} \sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)=\sum_{n \leq y} f(n) G\left(\frac{x}{n}\right)+\sum_{m \leq x / y} g(m) F\left(\frac{x}{m}\right)-F(y) G\left(\frac{x}{y}\right) .
$$

(b) Prove that for $x \geq 1$,

$$
\sum_{n \leq x} d(n)=x \log x+(2 \gamma-1) x+O(\sqrt{x}) .
$$

(c)

$$
\sum_{n \leq x}\left\{\frac{x}{n}\right\}=(1-\gamma) x+O(\sqrt{x})
$$

where γ is Euler's constant.
(d) Show that

$$
\sum_{n \leq x} \sigma(n)=\frac{\pi^{2}}{12} x^{2}+O(x \log x)
$$

