About this homework: This is a list of basic problems to test your proficiency in elementary aspects of classical mechanics and proper use of calculus to approach dynamical systems. This homework will not carry a formal grade, but you should work on understand how to solve these problems. Some of them may be a bit advanced but all are very standard. Feel free to ask for help to your coaches.

Problem 1

Consider a (point-like) particle moving in \mathbb{R}^{2}, whose trajectory (position at a time t) as a function of time is given by a function $\sigma: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{2}$, where $\sigma(t)=(x(t), z(t))$ for the functions:

$$
\begin{gathered}
x(t)=x_{0}+\frac{m}{c} v_{x, 0}-\frac{m}{c} v_{x, 0} e^{-\frac{c t}{m}} \\
z(t)=z_{0}+\frac{m}{c}\left(v_{z, 0}-g t\right)+\frac{m^{2} g}{c^{2}}-\frac{m}{c}\left(\frac{m g}{c}+v_{z, 0}\right) e^{-\frac{c t}{m}}
\end{gathered}
$$

where m is the mass of the particle, g is the gravitational acceleration (on Earth) given approximately by 9.8 in SI units, and $v_{z, 0}, v_{x, 0}$ are constants with units of velocity. c is also a constant.

- What are the units of the constant c ?
- Compute the velocity of this particle at a time t.
- Compute the acceleration of this particle at a time t.
- Compute the angular momentum of this particle at a time t.
- Newton law $F=m a$ should be valid for this particle. Determine the force that is applied to this particle at every time t.
- Can you use your previous result to write a differential equation for σ ? what can you learn from this expression?

Problem 2

A large class of forces in classical and quantum mechanics corresponds to what is called conservative forces. That is, these are forces F that can be written in terms of a differentiable function $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ (where you should think of \mathbb{R}^{3} as the space) by

$$
F=-\nabla V=-\left(\frac{d V}{d x}, \frac{d V}{d y}, \frac{d V}{d z}\right)
$$

so, the force is a vector at every point in space, formally we can write F is a function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and F is independent of time.

- Consider the special case that V is only a function of $\|r\|$ where $\|\|$ denotes the Euclidean norm for any $r=(x, y, z) \in \mathbb{R}^{3}$. We write $V(\|r\|)$. Determine an expression for F associated to this potential. If you find this too complicated, try the following explicit expression for V :

$$
V(\|r\|)=\frac{c}{\|r\|^{2}}
$$

where c is a constant (which units?) and ignore problems of differentiability at $r=0$ (i.e. you can consider $r \neq 0$).

- Show that the angular momentum L of a particle moving under the action of such force is conserved.
- Show that the energy E of the particle is a conserved quantity.
- There is one more conserved quantiy in this system, can you find it?. Hint: Try computing $\frac{d(p \times L)}{d t}$ where p is the momentum.
- Write the trajectory of a particle as $r(t)=\left(r_{1}(t), r_{2}(t), r_{3}(t)\right)$ and its momentum as $p(t)=\left(p_{1}(t), p_{2}(t), p_{3}(t)\right)$. Then, we define the Poisson bracket of two functions $f(p, r)$ and $g(p, r)$ as

$$
\{f, g\}=\sum_{i=1}^{3}\left(\frac{\partial f}{\partial r_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial g}{\partial r_{i}} \frac{\partial f}{\partial p_{i}}\right)
$$

Write the angular momentum as $L=\left(L_{1}, L_{2}, L_{3}\right)$ and write it in terms of p and r. Do the same for the energy E. Then compute

$$
\left\{E, L_{i}\right\}
$$

for $i=1,2,3$. Since we are on it, try also

$$
\left\{p_{i}, L_{j}\right\}
$$

for any $i, j \in\{1,2,3\}$.

Problem 3

We learned about the important concept of work made by a force $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ along the trajectory $r: \mathbb{R} \rightarrow \mathbb{R}^{3}$ of a particle. We will see that a general expression for the work takes the form:

$$
W\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} F(r(t)) \cdot \frac{d r(t)}{d t} d t
$$

Where $a \cdot b$ denotes the usual dot product of vectors in Euclidean space. Note we emphasized in the formula, by writing $W\left(t_{0}, t_{1}\right)$ that the work made by a force is defined for a path in space \mathbb{R}^{3} (i.e., work is not an 'instantaneous' quantity like angular momentum or velocity, it only make sense to talk about work made by a force along a path).

- Compute the work done by the force of problem 1, along a trajectory between the times $0 \leq t_{0}<t_{1}$.
- Can you write a force F (not identically 0), possibly depending on time, whose work, along any trajectory vanishes?. Hint: The force can depend on quantities associated to the particle.
- Compute an expression for the work done by a conservative force. Is there something special about it? if it's hard to see, consider writing it for an example.
- Is the force of problem 1 conservative?

Problem 4

Consider the quantum harmonic oscillator. This is a physical system whose properties are completely determined by the differential operator

$$
\widehat{H}:=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}-\frac{1}{2} m \omega^{2} x^{2}
$$

where the constant m is the mass of the particle, $\omega=\sqrt{\frac{k}{m}}$ is the frequency (k is a constant with units of $\left.\frac{\text { force }}{\text { distance }}\right)$ and \hbar is the Planck constant, which has units of energy•time. This sistem has states, which are eigenfunctions of \widehat{H} and we can define an energy associated to each of them. It is known that the state of minimal energy has energy larger than 0 . Without solving any differential equation or using any a priori knowledge of quantum mechanics, estimate the minimal energy of this system.

Problem 5

Given two points \vec{x}_{1} and \vec{x}_{2} (in three dimensions), consider a curve connecting them. Assuming the system is on the Earth surface and only subject to gravity which can be approximated by a constant force $\vec{F}=-g e_{3}, g \in \mathbb{R}_{>0}$ (constant), find the function of a curve which gives the shortest flight time if a particle flies along the curve.

Problem 6

A lantern moves up, perpendicular to the floor, at a constant speed $u \in \mathbb{R}_{\geq 0}$. Assume that the light coming out of the lantern forms a conical shape with apex at the position of the latern, covering a circular area on the floor. A rat moves on the floor at a speed v_{0} towards the lantern, crossing diametrically the illuminated area. Consider the siuation that at time $t=0$
the lantern is over the floor and the rat a distance D. Characterize the cone by a constant angle ϕ as shown in the figure. Compute the amount of time T the rat is illuminated by the lantern, as a function of u, v_{0}, D and ϕ. Analyze and interpret your result for T very large and very small.

