Problem 1

Damped Oscillator. Consider a (1-dimensional) harmonic oscillator subjected to a force that depend on the velocity of the particle. If we write the position of the particle as a function $x: \mathbb{R} \rightarrow \mathbb{R}$, that is, a map $t \mapsto x(t)$, the equation of motion looks like

$$
m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=0
$$

where m is the mass of the particle.

- What are the units of the constants b and k ?
- Find the form of most general solution to this differential equation. For this, first show that if $x_{1}(t)$ and $x_{2}(t)$ are solutions of this equation, so is $x_{1}(t)+x_{2}(t)$. Then, use the fact that the most general class of solutions can be written in the form $A e^{\lambda t}$ with A and λ constants. Can you determine A and or λ ?
- The solution found above has different qualitative behavior depending on the values parameters m, b, k. Explain this.
- Consider the cases found in the previous example and assume we have the initial conditions

$$
x(0)=x_{0} \quad \frac{d x(0)}{d t}=\dot{x}_{0}
$$

for some real numbers $x_{0} \dot{x}_{0}$ and then draw the trajectories of the solutions in the phase space (x, p) (where $p=m \frac{d x}{d t}$ is the momentum of x).Hint: if it this is hard for you to visualize this, you can take specific values for the constanst $m, b, k, x_{0}, \dot{x}_{0}$ and/or use the help of a software of your choice to draw the plots.

Problem 2*

Consider a man walking his dog. The man and the dog's position can be model by a point in \mathbb{R}^{2}. The man moves with constant velocity \vec{v}_{m} and the dog moves with constant speed $\left\|\vec{v}_{d}\right\|$ and it always moves towards the man. Find an equation for the curve described by the dog (i.e. no need to find $\vec{x}_{d}(t)$, we want to just know the shape of the curve, not how it evolvs in time, for example describe it as points $\left.\left(x_{1}\left(x_{2}\right), x_{2}\right) \in \mathbb{R}^{2}\right)$.

Problem 3

Consider two particles of mass m each joined by a string of mass 0 which cannot stretch (an 'ideal string') of length πR and the system is over a cylinder of radius R (the cylinder
is fixed) and at $t=0$ the particles are located in a symmetric position with respect to the center of the cylinder. giving a very small velocity to the particle on the right so the system star falling by the effect of gravity (pointing towards $-e_{3}$), as the picture shows.

1. Write the equation of motion of both particles.
2. Write a differential equation of the form $\frac{d^{2} \phi}{d t^{2}}=F(\phi)$ for the angle ϕ shown in the picture and integrate it to find an expression for $\dot{\phi}:=\frac{d \phi}{d t}$. Hint: use the fact that we can write

$$
\frac{d^{2} \phi}{d t^{2}}=\frac{d \dot{\phi}}{d \phi} \dot{\phi}
$$

and so the equation becomes

$$
\dot{\phi} d \dot{\phi}=F(\phi) d \phi
$$

which can be integrated.
3. Find the angle ϕ_{0} for which the particle on the left falls off from the cylinder. Hint: if a particle have no contact with the cylinder, what happens to the normal force?

