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A. Periodic potential

In this problem, we work on one dimension. Consider first a particle in a periodic potential,

with period a ∈ R, then the Hamiltonian operator is periodic:

Ĥ(x̂+ a, p̂) = Ĥ(x̂, p̂)

• Show that this implies Ĥ commutes with the translation operator Ûa := exp(−iap̂/ℏ). How

does this simplify the problem of finding the eigenfunctions of Ĥ?

• Argue that the eigenfunctions of Ûa have eigenvalues in the unitary circle. Write the eigen-

values as (this is just a convention) eika where k ∈ R is some value to be determined (in

general, it depends on the details of the problem).

• Show that in the coordinate representation, the eigenfunctions of Ĥ can be written as ψk(x) =

eikxuk where uk(x+a) = uk(x) is some periodic function. This is known as Bloch’s theorem

(or, more precisely, a simplified version of it).

• Use your previous results to solve for the eigenfunctions of the periodic potential (Kronig-

Penney)

V (x) :=
∞∑

n=−∞
W0δ(x− na) W0 ∈ R

where δ(x) is the Dirac delta function.
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B. Liouville’s theorem

Liouville’s theorem is an important property of the flow of states in the phase space of a

Hamiltonian system. Assuming that the Hamiltonian is time independent, it says that this flow

preserves volume.

1. Explain the theorem, and a proof.

2. Find a suitable system, or systems, which you are interested in. Use a computer to solve the

equations of motion, and study the behaviour of the flow of states.

3. Write an explanation of your system, and how the theorem applies to it. Illustrate your

explanation with pictures made during your computer work.

One possible reference is the following.

• V. Arnold ‘Mathematical Methods of Classical Mechanics’. Part II, Chapter 3, 16.

A possible system is as follows.

• Consider a light rod of length R fixed at one end, with mass m attached at the other,

swinging freely under gravity g in a vertical plane to make a pendulum. The Lagrangian is

given by

L = 1
2mR

2θ̇2 +mgR cos θ

with θ the angle from the downward vertical.

C. Central potential

This problem is about the behaviour of a quantum charged particle on a constant magnetic

field B (without loss of generality, you can take B = B0e2, where B0 is a real constant).

1. The classical Hamiltonian of this particle is given by

H =
1

2m

(
p− q

c
A
)2

where m is the mass of the particle, q its charge and c is the speed of light in the vacuum.

p is the momentum of the particle and A is the vector potential for B, i.e. A : R3 → R3 is a

vector function defined by

B = ∇×A.
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Show that H makes sense, by computing the Hamilton equations of motions and showing

that they reduce to the equation of motion of a classical charged particle on a constant

magnetic field, that is

d2x

dt2
=

q

mc
v ×B, v := p− q

c
A.

2. It is clear that B = ∇× A does not uniquely define A. Write at least three different vector

functions A (in Cartesian coordinates) that give the same B = B0e3. This freedom is called

gauge symmetry.

3. We will now move on to the quantization of this problem. Consider the Hamiltonian operator

(in the coordinate representation)

Ĥ =
1

2m

(
p̂− q

c
A
)2

where p̂ = (p̂1, p̂2, p̂3) satisfy the canonical commutation relations. Define the operators

Πi = p̂i − q
cAi for i = 1, 2 and compute their commutation relations.

4. Now, set p̂3 = 0 and A3 = 0 (why does the latter makes sense in general?), and show

that, by defining appropriate linear combinations of Π1 and Π2, the Hamiltonian operator Ĥ

takes the form of an harmonic oscillator. Compute the energy levels and explain how they

qualitatively depend on B. These are known as the Landau levels.

5. Note that, in the previous question we did not use any particular gauge (i.e. a particular

choice for a solution of B = ∇ × A). So, the energy levels do not depend on the choice

of gauge. Argue that the eigenfunctions do indeed depend on the choice of gauge. Then,

solve for the ground state in the gauge A = B0xe2. Hint: Try a solution of the form

ψ(x, y) = f(x)g(y).

6. Consider now the gauge A = −1
2B0ye1+

1
2B0xe2 and solve for the ground state on it. Hint:

It may be convenient to work using the complex coordinates z = x+ iy and z̄ = x− iy.

D. Symplectic geometry and conserved quantities

Symplectic manifolds are a class of manifolds which appear naturally when we study mechanics

from a mathematical point of view. In this problem we will work in the simpler setting of symplectic

vector spaces
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1. Define of a symplectic vector space (a good reference can be Ch. 1 of the book ‘Lectures of

symplectic geometry’ by A. Cannas da Silva). In addition define the concept of Hamiltonian

vector field in a symplectic vector space.

2. Apply your previous result to the case that the symplectic vector space is the phase space of

a system of a single point particle, moving on R3 under the action of a central force sourced

at the origin i.e. the potential takes the form U = U(∥x⃗∥). Describe the symplectic form on

these coordinates. What is the meaning of the Hamiltonian vector field in this space?

3. Consider the case U = U(∥x⃗∥) is the gravitational potential and show that the angular

momentum, the energy, and the Laplace-Runge-Lenz vector are conserved quantities (you

may have already done some of these in Hw 0).

4. Bonus: From Noether theorem, we know that each conserved quantity is associated to a

symmetry. What is the symmetry associated to the Laplace-Runge-Lenz vector? One way to

proceed is suggested: you can assume any conserved quantity (for example a component of

the Laplace-Runge-Lenz vector) can be used to construct a Hamiltonian vector, then argue,

by analogy to the time translation case, that the infinitesimal version of these symmetries

must corresponds to the flow along the vector. After obtaining an explicit version for these

symmetries, apply them to the Lagrangian and check they are indeed symmetries of the

action.

Helpful references include the following.

• V. Arnold ‘Mathematical Methods of Classical Mechanics’. Part II, Chapter 4 and Part III,

Chapter 8. .

E. Reference Systems

Consider the classical Newton’s system in the space R2. Newton believed that the space and

time are independent aspect of objective reality. Following Newton, we separate the space R2

and time R and believe that they has no direct relations. When we try to say this absolute

space-time, we will use the notation R(2,1) := R2 ⊕ R.

1. Give a mathematical definition of the inertial frames of R(2,1).



5

2. Consider a translation on R(2,1), this will induce a transformation between two different

inertial frames. Does this transformation preserve Newton’s Law? Prove your statement.

3. How about a rotation on R2?

4. Suppose two inertial frames have different velocity v1 and v2, how are these two inertial

frames related? Find a transformation to describe this relation. Such transformation is

called the Galilean boost. Does this transformation preserve Newton’s Law? Prove your

statement.

5. Define Galilean transformations on R(2,1). And prove that they form a group.

From now on, we denote the Galilei group on R(2,1) by Gal(2, 1).

Based on this fact, one can ask several questions in many different ways. You have to choose

ONE of the following problems as your research direction. And do NOT study more than one

direction at the same time.

1. Geometry associated to Galilei group

(a) The Galilei group Gal(2, 1) has a subgroup that is generated by the rotation on R2 and

the translation on R2 (not on R(2,1)), denoted by E2. Describe E2 and its action on

R2.

(b) Find the definition of a metric space. Then define a metric on R2 by your intuition in

reality. Prove that the E2-action preserves metric on R2. Therefore, the metric is an

invariant on R2 under the action of E2.

(c) Indeed, we can prove that the group which preserves the metric on R2 can only be E2.

So Gal(2, 1) does not preserve the metric on R2. Prove it.

(d) (*) Extend the metric on R2 to a function on R(2,1). So this function is also not an

invariant of R(2,1) under the Gal(2, 1)-action. Try to find the invariants of R(2,1) under

the Gal(2, 1)-action and explain the physical significant. (Hint: Maybe you can first study the

case in R(1,1). Or maybe you can consider when the metric on R2 could be an invariant.)

(e) (**) Based on the invariants you just found, prove that the group which preserves the

invariants can only be Gal(2, 1).

2. Special Relativity in space-time R2,1.
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(a) Find some evidence that some physical rules and quantities are not covariant under the

action of the Galilei group. And find some evidence that the speed of light is invariant

in different reference systems.

(b) (*) Based on these two facts (you have to admit them!), try to derive the transformation

between two inertial frames whose y-component velocity are the same, but x-component

velocity differs by v. Such transformations are called boosts.

(c) Show that when v ≪ c (or equivalently, c→ ∞), the boosts degenerate to the Galilean

boosts.

(d) Show that the boosts in two directions, together with rotations on R2, form a group,

denoted by SO(2, 1). We will call this group the Lorentz group.

(e) Show that the translation on R2,1 together with SO(2, 1) form a group, denoted by

Poin(2, 1). And describe the group action on R2,1

(f) Let p1 := (x1, y1, t1) and p2 := (y1, y2, t2) be two points of R2,1, we define a distance of

these two points as follows:

d2(p1, p2) = (x1 − x2)
2 + (y1 − y2)

2 − c2(t1 − t2)
2

Show that the Poincare group Poin(2, 1) preserves this distance.

F. Topological Orders

In this project, you will study a quantum many-body system which is very simple but interesting,

the toric code model. The 2d toric code model on a square lattice is defined as follows. There is a

spin-1/2 on each edge (or link) of the lattice. In other words, the local degree of freedom Hi on each

edge i is a two-dimensional Hilbert space C2. The total Hilbert space is Htot :=
⊗

iHi =
⊗

iC2.
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Let us recall Pauli matrices acting on C2:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1


1. Show that σiσj + σjσi = 2δij id, where i, j = x, y, z, δij = 1 only if i = j, other = 0 and id is

the identity matrix. As a consequence, σ2i = 2id for i = x, y, z.

For each vertex v and plaquette p we define a vertex operator Av :=
∏

i σ
i
x and a plaquette

operator Bp :=
∏

j σ
j
z acting on adjacent edges. Here σix = · · ·⊗id⊗σx⊗id⊗· · · is the operator that

acts on Hi as σx and acts on other local Hilbert spaces as identities. For example, the operators

in Figure 6 are

Av = σ1xσ
2
xσ

3
xσ

4
x, Bp = σ3zσ

4
zσ

5
zσ

6
z

2. Show that [Av, Bp] = 0 for any vertex v and any plaqutte p.

The Hamiltonian of toric code model is defined to be:

H :=
∑
v

(1−Av) +
∑
p

(1−Bp)

where the summation takes over all vertices v and all plaquettes p.

3. Show that [H,Bp] = 0 = [H,Av] for any vertex v and any plaqutte p.

4. Find the ground state of this Hamiltonian and find the corresponding energy. What are

eigenvalues of the operators Av and Bp on ground state?
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It follows that the total Hilbert space can be decomposed as the direct sum of common

eigenspaces of all Av and Bp operators.

5. Now supposed this lattice model is defined on a genus g closed surafce. Find the ground

state degeneracy i.e. the dimension of the ground state subspace by Euler’s formula

V − E + F = 2− 2g

where V is the number of the vertices, E is the number of edges, F is the number of faces.

What you just find is a topological invariant, since it only depends on the genus g of the surface,

which means it is invariant under any isomorphism between topological spaces. Such quantum

many-body system is called a topological order.

A quantum many-body system is ”topological” intuitively implies that it is ”invariant” under

some small perturbations. Such perturbations are characterized by so-called local operators i.e.

operators are defined in a bounded region and act on the local Hilbert space in the bounded

region. In toric code model, for example, σix is a local operator since it only acts on the i-edge.

There are also some topological excitations (or topological defects) invariant under the action of

local operators. More explicitly, a topological defect is a subspace of the total Hilbert space that is

invariant under the action of local operators. For example, the ground state belongs to the trivial

topological excitations, which we denote 1.

6. (*) Consider the following state |ψv0⟩ at the vertex v0 satisfying
Av0 |ψv0⟩ = −|ψv0⟩,

Av|ψv0⟩ = |ψv0⟩ for all vertices v ̸= v0,

Bp|ψv0⟩ = |ψv0⟩ for all plaquttes p

(1)

Show that it cannot be annihilate by local operators σiz where i is adjcent to vertex v0. Thus

|ψv0⟩ belongs to a non-trivial topological excitation which we denote e.

7. Show that the states |ψv1⟩ and |ψv2⟩ for any vertices v1 and v2 belongs to the same topological

excitation e.
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Now we can explain why these topological excitations are ”topological”: the local operators only

changes the position of the topological excitations |ψv0⟩, and would not change a topological ex-

citation to another one. Geometrically, it is equivalent to deform the background a little bit such

that the excitations moves to the new position.

Similarly, for each plaqutte p0 there is a state |ϕp0⟩ satisfying the following property:
Bp0 |ϕp0⟩ = −|ϕp0⟩,

Bp|ϕp0⟩ = |ϕp0⟩ for all plaquttes p ̸= p0,

Av|ϕp0⟩ = |ϕp0⟩ for all vertices v

(2)

It is not hard to see that |ϕp0⟩ belongs to another topological excitation which we denote m.

8. Notice that the local operators σiz will move the topological excitation e on the lattice.

Consider the following diagram,
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we can use local operators to move e around m. This is called the double braiding of e and

m. Compute it, you would get a number.

9. Show that we can always enlarge the loop by some local operators without changing the

number of double braiding. So the double braiding is a non-local property of topological

excitations. (Hint: you may first consider the action of a local operator by twice.)

G. Fields and Differential Forms

1. The Coulomb’s law states that the force between two particles with charge q, q′ has the form

F =
qq′r

4πε0r3
,

where ε0 = 8.8541878 × 10−12 F/m is the vacuum permittivity and r is the distance. The

electric field E is defined by the ratio of the force experienced by a charged particle to its

charge q, i.e. E = F/q. Show that ∇·E = ρ/ε and ∇×E = 0, where ρ is the charge density.

2. The Biot-Savart law states that the steady electric current j excite the magnetic field B via

B(r) =
µ0
4π

∫
j(r′)× r− r′

|r− r′|3
d3r′.

where µ0 = 4π×10−7 H/m is the vacuum permeability. Show that∇·B = 0 and∇×B = µ0j.

3. Show that the current j and the charge density ρ satisfy the continuity equation

∇ · j+ dρ

dt
= 0.

4. The Farady’ law states that the changes of the magnetic flux in a fixed circuit l generate

the electromotive force E then induce the electric field E.∮
l
E · dl = E = − d

dt

∫
S
B · dS.

Show that ∇×E = −∂B
∂t .

5. We have the equation ∇×B = µ0j, taking the divergence on the both sides we get

0 = ∇ · (∇×B) = µ0∇ · j.

The result contradicts to the continuity equation. Hence Maxwell rewrite the equation

∇×B = µ0(j+ ε0
∂E

∂t
).

Show that the divergence of the right hand side is 0.
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6. The above results give the Maxwell’s equations

∇ ·E = ρ/ε0;

∇ ·B = 0;

∇×E = −∂B
∂t ;

∇×B = µ0(j+ ε0
∂E
∂t ).

Show that the electric field E and the magnetic field B both satify the wave equation

∇2f =
1

v2
∂2f

∂t2
.

Calculate the speed of the wave v and explain this result.

Consider the space Rn = (x1, . . . , xn), here the i in dxi just an index rather than the power.

Define the wedge product of the differrentials dx1, . . . , dxn, denoted by ∧, which is:

(1) bi-linear: (adxi + bdxj) ∧ dxk = adxi ∧ dxk + bdxj ∧ dxk,

dxi ∧ (adxj + bdxk) = adxi ∧ dxj + bdxi ∧ dxk;
(2) anti-commutative: dxi ∧ dxj = −dxi ∧ dxj ;

(3) associative: (dxi ∧ dxj) ∧ dxk = dxi ∧ (dxj ∧ dxk).

Let f : Rn → R be a smooth function, called a 0-form on Rn. Take the differential of f :

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

Then we say df is a 1-form on Rn. Generally, a 1-form ω on Rn has the expression

ω = ωidx
i

where ωi : Rn → R are smooth functions on Rn and dx1, . . . , dxn form a basis of all 1-forms on Rn.

Reminder: You should always remember the Einstein summation convention: sum all the

repeated index, called the dumb index, over all possible values. Here ω = ωidx
i :=

∑n
i=1 ωidx

i.

For example, the wedge product of ω = ωidx
i and θ = θjdx

j is

ω ∧ θ =
∑
i,j

(ωidx
i) ∧ (θjdx

j) =
∑
i,j

(ωiθj)dx
i ∧ dxj =

∑
i<j

(ωiθj − ωjθi)dx
i ∧ dxj .

Then we get a 2-form ω ∧ θ. We can construct a k-form by taking the wedge product of k 1-forms.

Let Ωk(Rn) denote the set of k-forms on Rn. Then we can generalize the wedge product by

∧ : Ωk(Rn)× Ωl(Rn) → Ωk+l(Rn).
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7. Show that {dxi1 ∧ · · · ∧ dxik | i1 < · · · < ik} is a basis of Ωk(Rn) and calculate dimΩk(Rn).

8. We extend the differential operator d : Ω0(Rn) → Ω1(Rn) to the exterior derivative

d : Ωk(Rn) → Ωk+1(Rn), ω 7→ dω.

For ω = ωi1···ikdx
i1 ∧ · · · ∧ dxik , where ωi1···ik is the functions of xi1 , . . . , xik , dω is given by

dω = (dωi1···ik) ∧ dx
i1 ∧ · · · ∧ dxik =

∂ωi1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik .

Show that d2 = d ◦ d = 0.

Define the Hodge star operator on the Minkowski space R3,1 = (x, y, z, t) with the Minkowski

metric ds2 = c2dt2 − dx2 − dy2 − dz2 by

∗ : Ωp(R3,1) → Ω4−p(R3,1)

Explicitly, we have the formulas

∗1 = cdt ∧ dx ∧ dy ∧ dz, ∗(cdt ∧ dx ∧ dy ∧ dz) = 1.

∗cdt = dx ∧ dy ∧ dz, ∗dx = cdt ∧ dy ∧ dz, ∗dy = cdt ∧ dz ∧ dx, ∗dz = cdt ∧ dx ∧ dy.

∗(cdt ∧ dx) = −dy ∧ dz, ∗(cdt ∧ dy) = −dz ∧ dx, ∗(cdt ∧ dz) = −dx ∧ dy.

∗(dx ∧ dy) = cdt ∧ dz, ∗(dy ∧ dz) = cdt ∧ dx, ∗(dz ∧ dx) = cdt ∧ dy.

∗(dx ∧ dy ∧ dz) = cdt, ∗(cdt ∧ dx ∧ dy) = dz, ∗(cdt ∧ dy ∧ dz) = dx, ∗(cdt ∧ dz ∧ dx) = dy.

9. Define the current 1-form J on R3,1 by the charge density ρ and the current j = (jx, jy, jz)

J =
ρ

ε0
dt− µ0jxdx− µ0jydx− µ0jzdz.

Show that the continuity equation is equivalent to d(∗J) = 0.

10. The electric field E = (Ex, Ey, Ez) can be identified with a 1-form E on R3,1

E = Exdx+ Eydy + Ezdz.
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The magnetic field B = (Bx, By, Bz) can be identified with a 2-form B on R3,1

B = Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy.

The electromagnetic field strength 2-form F on R3,1 is defined by

F = E ∧ dt+B.

Define the adjoint operator d∗ of d on R3,1 by

d∗ = ∗d∗ : Ωp(R3,1) → Ωp−1(R3,1).

Show that the Maxwell’s equations are equivalent to


dF = 0;

d∗F = J.

H. Collective phenomena: diffusion equation

In this problem we see how (classical) fields can arise from the dynamics of multi-particle

systems. Consider a system of N non-interacting particles moving in the real line R. The position

of a particle at time t is denoted xi(t), i = 1, . . . , N and satisfy the current properties:

• Every τ seconds the particle can move to the left or to the right, with probability 1
2 for each.

• Every time it moves it does it by an amount δ ∈ R>0, so xi(t+ δ) = xi(t)± δ.

Assume then we have a ’cloud’ of particles i.e. N ≫ 1 (possibly several orders of magnitude).

Then it makes sense to define a function P (t, x), P : R2 → R, where P (t, x) denotes the number

of particles at position x ∈ R, at time t. So, in principle x in the argument of P can only take

discrete values but we will approximate it, later on, to the whole real line.

1. Explain why in principle x in the argument of P can only take discrete values and under

which circumstances it makes sense to assume it is continuous.

2. Suppose we have L particles at a position x. Then we can assume, as a good approximation,

that half of them will move to the right and half to the left after τ seconds. Denote then

J(t, x) the number of particles passing though a point between x and x+ δ per time, during

an interval of τ seconds i.e. J has units of time−1. Find an expression for J(t, x) in terms

of the function P and τ .
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3. Define the density of particles by ρ(t, x) := P (t,x)
δ and write J in terms of ρ. Then, take the

limit δ → 0 and express J in this limit (you can assume τ
δ remains constant in this limit).

You should find that J is proportional to a partial derivative of ρ.

4. Using a similar reasoning than in 2, argue that

P (t+ τ, x)− P (t, x) = (J(t, x− δ/2)− J(t, x+ δ/2))τ

5. Finally, taking the limit τ → 0 (keeping τ
δ constant), show that ρ satisfies the PDE:

∂ρ(t, x)

∂t
= D

∂2ρ(t, x)

∂x2

what is the valued of the constant D?

6. In order to understand the physical meaning behind this equation, known as the diffusion

equation, we will compute some exact solution for it. For this purpose, consider a solution

of the form

ρ(t, x) =

∫ ∞

−∞
ρ̃(k)eikx−ωtdk

where ρ̃ : R → C is a complex function and ω is a real constant. Moreover, we assume all

the functions are integrable, so, is ok to exchange partial derivatives and integral. Show that

the ρ(t, x) above is a solution if

Dω = k2

7. Now, we give initial conditions to the system. consider

ρ(0, x) =
1√
2πσ2

exp

(
− x2

2σ2

)
where σ is a positive constant. Use this initial condition and the following expression for the

Dirac delta function:

δ(x) =

∫ ∞

−∞

dp

2π
eipx

to find an explicit expression for ρ̃(k), in this case.

8. Performing the integrals, find an explicit expression for ρ(t, x). You should find a real

function. Plot it, at various times and explain your results.
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I. Chaotic systems

Chaotic systems are the most common systems in nature. In this project we explore some of

their properties.

1. Consider a one dimensional system with the following Hamiltonian

H =
1

2
p2 −K cosx

∞∑
n=−∞

δ(t/T − n)

where K,T ∈ R>0 are constants and δ(t) is the Dirac delta function. Argue that the

evolution of the system can be approximated by a discrete map, as t evolves from t = 0, to

t = T, 2T, 3T, . . . as

pn = pn−1 −K cos(xn−1), θn = xn−1 + pn

where pn = p(nT ) and xn = x(nT ).

2. With the help of a software of your choice, plot different trajectories (in the phase space

(x, p)) for different initial conditions for (x, p) and for different values of K. Compare with

the dynamical system

dp

dt
= −K

T
sin θ,

dx

dt
=

1

T
p

when is this a good approximation? (or when it becomes worse and worse). Compare also

with K = 0, what happens with the periodic orbits?

3. Consider now a one dimensional system given by a particle in a double well potential:

U(x) = R
x20
8

(
1−

(
x

x0

)2
)2

where R, x0 ∈ R>0 are constants. With the help of a plot of U(x), sketch the phase diagram

for this system, with trajectories at different energies. In particular, sketch the separatrix

trajectory and its energy (you don’t need to find an analytic expression for this trajectory).

4. Now consider a time dependent perturbation of U(x):

U(x, t) = U(x)− F0 sin(ωt)x

where ω, F0 ∈ R>0 are constants. Even though conservation of energy do not longer holds

after the perturbation, assume it does and for a small F0, find an approximation for the new
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location of the separatrix energy (your answer must depend on t). Plot, with a software,

different solutions of the equations of motion, in the phase space (you can assume the kinetic

energy is 1
2 ẋ

2), for different values of F0 (and fix the other constants). By comparing to the

phase diagram for F0 = 0, show, by plotting, that as F0 increases, the trajectories around

the separatrix becomes more and more complex, but away of it, they remain regular for

small F0. This is an example of how a perturbation to an integrable system transforms it

into a chaotic one.

5. Bonus: Consider a solution x0(t) of the perturbed equation of motion and a close-by solution

x0(t)+ δx(t) where δx(t) is a small perturbation. Linearize the equations of motion and find

an differential equation for δx(t). Integrating in numerically, show that
√
(δx(t))2 + (δẋ(t))2

diverges as time increases (plot it for different values of F0).


