ACI Homework Due $8 / 1$ in class

July 25, 2024

Problem 1. 1. Let $P=(5,4)$ and $Q=(-1,5)$. Find a normal vector and linear equation for the line passing through P and Q.
2. Prove that there exists a unique line passing through two distinct points on \mathbb{R}^{2}.
3. Prove that if two lines in \mathbb{R}^{2} have more than two intersection points, then they are the same line.
Problem 2. Find the projection of vector $\vec{v}=\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)$ onto vector $\vec{w}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Problem 3. We say a set $A \subset \mathbb{R}^{2}$ is bounded if A is contained in a disc with finite radius.

Let $\mathcal{L}=\left\{l_{1}, \cdots, l_{5}\right\}$ be a line arrangement consisting of five distinct lines in \mathbb{R}^{2}. Let N_{1} be the number of regions associated with \mathcal{L}, and N_{2} the number of bounded regions. What are the possible pairs of $\left(N_{1}, N_{2}\right)$?

Problem 4. 1. Let $\mathcal{L}=\left\{l_{1}, \cdots, l_{n}\right\}$ be a line arrangement consisting of n distinct lines in \mathbb{R}^{2}. Find the maximal value for N_{1}, the number of regions associated with \mathcal{L}, and the maximal value for N_{2}, the number of bounded regions.
2. When each of the numbers N_{1} or N_{2} achieves the maximal value in the last question, is it true that \mathcal{L} is in general position?
3. Let $\mathcal{H}=\left\{H_{1}, \cdots, H_{n}\right\}$ be a plane arrangement in \mathbb{R}^{3}. Find the maximal value for N_{1}, the number of regions associated with \mathcal{H}, and the maximal value for N_{2}, the number of bounded regions.
4. When each of the numbers N_{1} or N_{2} achieves the maximal value in the last question, is it true that \mathcal{H} is in "general position"? (How to define a plane arrangement is in general position.)
Problem 5. 1. Guess what are the all possible convex subsets in \mathbb{R}.
2. Try to write down examples of sets $A \subset \mathbb{R}^{2}$ such that both A and its complement $\mathbb{R}^{2} \backslash A$ are both convex subsets of \mathbb{R}^{2}.
3. Guess what are the possible sets A in the previous question.

Problem 6. Define the cross product of vectors in \mathbb{R}^{3} by the following algebraic formula. If

$$
\vec{v}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), \vec{w}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Then the cross product $\vec{v} \times \vec{w}$ is a vector in \mathbb{R}^{3} with coordinates

$$
\vec{v} \times \vec{w}=\left(\begin{array}{c}
a_{2} b_{3}-b_{2} a_{3} \\
-a_{1} b_{3}+b_{1} a_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right) .
$$

Prove that

1. $\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}$.
2. $\vec{v} \times \vec{w}$ is perpendicular to both \vec{v} and \vec{w}.
3. If \vec{v} and \vec{w} has angle θ, then $|\vec{v} \times \vec{w}|=|\vec{v}||\vec{w}| \sin (\theta)$.
4. Find a normal vector of the plane passing through $P=(1,2,3), Q=$ $(4,5,6)$ and $R=(1,1,2)$.

Problem 7. Find whether there exists seven lines on \mathbb{R}^{2} such that they have the following intersection relation, see picture at the next page. The circle in the middle means a line passing through points P, Q, R. The seven points A, B, C, D, P, Q, R are all the intersection points formed by these seven lines.

Problem 8. Find whether there exists nine lines on \mathbb{R}^{2} with the following intersection relations, see the picture at the last page. There are 14 intersection points P_{1}, \cdots, P_{14}. (Hint: Pappus's hexagon theorem)

Figure 1: Picture for Problem 7

Figure 2: Picture for Problem 8

