ACI HW2 Due 8/8 in class

August 1, 2024

Problem 1. Draw the Hasse diagram for the intersection poset formed by the line arrangement x = 0, x = y, x = -y, x = -1 in \mathbb{R}^2 . Compute the Möbius function and characteristic polynomial. Check the Zaslavsky theorem in this case.

Problem 2. Let \mathcal{H} be an arrangement of hyperplanes in \mathbb{R}^n defined by $x_1 = x_2, x_2 = x_3, \cdots, x_{n-1} = x_n, x_n = x_1$. Compute the characteristic polynomial $\chi_{\mathcal{H}}(t)$ and the number of regions for \mathcal{H} .

Problem 3. Let \mathcal{H} be an arrangement of m hyperplanes in general position in \mathbb{R}^3 . Compute the characteristic polynomial. (Optional: Compute the characteristic polynomial for the hyperplane arrangements in the general position in \mathbb{R}^d)

Problem 4. Let G be a graph with d vertices, and for every pair of vertex, there is an edge. This is called a complete graph. Compute the chromatic polynomial of G and the number of acyclic regions in G.

Problem 5. Let G be a graph with d vertices. Suppose that G has a k-element clique, i.e., k vertices such that each pair of vertices is connected by an edge.

- 1. Let K_k be the complete graph on k vertices. Show that $\chi_G(t) = \chi_{K_k}(t)f(t)$ for some polynomial f(t) with integer coefficients.
- 2. Show that k! divides the number of acyclic orientations of G.

Problem 6. Let \mathcal{H} be a hyperplane arrangement. Show that the coefficients of the characteristic polynomial $\chi_{\mathcal{H}}$ have alternating signs.

Problem 7. Assume that the hyperplane arrangement \mathcal{H} is central. Prove that t = 1 is a root of $\chi_{\mathcal{H}}(t)$.

Problem 8 (Optional). Let \mathcal{H} be an arrangement of hypersurfaces in \mathbb{R}^d defined by $\vec{n}_i \cdot \vec{x} = b_i$, $1 \leq i \leq m$. Let $\widetilde{\mathcal{H}}$ be the m + 1 hyperplanes in $\mathbb{R}^{d+1} = (x_1, \cdots, x_d, y)$ defined by $\vec{a}_i \cdot \vec{x} = b_i y$, $1 \leq i \leq m$ and y = 0. Prove $\chi_{\widetilde{\mathcal{H}}} = (t-1)\chi_{\mathcal{H}}$.