ACI HW3 Due 8/13 in class

August 8, 2024

Problem 1. Consider the hyperplane arrangements in \mathbb{R}^d defined by $x_i + x_j = 0$ and $x_i - x_j = 0$ for all pairs $i \neq j$. Find the characteristic polynomial.

Problem 2. Let G = (V, E) be a graph with d vertices $V = \{1, 2, \dots, d\}$ and \mathcal{H} be the corresponding graphic arrangement in \mathbb{R}^d . Let \mathcal{A} be the set of hyperplanes $x_i = 0$ for all $1 \leq i \leq d$. Express the characteristic polynomial of $\mathcal{H} \cup \mathcal{A}$ in terms of the characteristic polynomial of \mathcal{H} .

Problem 3. Let $\triangle ABC$ be an equilateral triangle on \mathbb{R}^2 , try to find all the reflections in the reflection group generated by the three reflections R_{AB}, R_{AC}, R_{BC} .

Problem 4. Consider all the reflection symmetries of a cube in \mathbb{R}^3 . The mirrors of these reflections form a hyperplane arrangement. Find the number of regions cut out by this hyperplane arrangement and the order of the reflection group generated by these reflections. (Optional: Find the characteristic polynomial for this arrangement.)

Problem 5 (optional). Let P be the poset of positive integers defined by $a \leq b$ iff a|b. Prove that $\mu(a,b) = (-1)^k$ if $\frac{b}{a} = p_1p_2p_3\cdots p_k$ with distinct primes $p_1, p_2, p_3, \cdots, p_k$; and $\mu(a,b) = 0$ otherwise. Hint: use the following theorem

Theorem 1. Let L be a finite lattice with at least 2 elements and $\hat{0} \neq a \in L$, then

$$\sum_{a \lor x = \hat{1}} \mu(x) = 0.$$