ACI Projects

August 1, 2024

Project 1. In this project, you will compute invariants related to certain hyperplane arrangements.

1. Let Ω be a convex set in \mathbb{R}^d defined by

 $x_1 + x_2 + \dots + x_d \le 1$, and $x_1 \ge 0, x_2 \ge 0, \dots, x_d \ge 0$.

Find all the reflections that preserve Ω and the corresponding mirror hyperplanes.

- 2. Let $\mathcal{H} = \{H_1, \dots, H_n\}$ be the hyperplane arrangement formed by the reflection mirrors. Count the number of regions cut out by this arrangement.
- 3. Find the characteristic polynomial of this arrangement.
- 4. Next, we consider the translations of \mathcal{H} . Let \mathcal{H}_m be the set of hyperplanes that are parallel to some $H_i \in \mathcal{H}$ and have distance $D \in \{0, 1, 2, \dots, m\}$ with H_i . Find the characteristic polynomials for \mathcal{H}_m and the number of regions cut out by \mathcal{H}_m .
- 5. Let G be the group generated by all reflections that preserve Ω . What is the minimal number of reflections to generate G. How to characterize the minimal generating set of reflections for G?

Project 2. In project, you will find a counting interpretation for the coefficients of characteristic polynomial of an arrangement.

Definition 1 (Closure). Let $\mathcal{H} = \{H_1, \dots, H_n\}$ be a hyperplane arrangement in \mathbb{R}^d . Assume H_i is defined by the linear equation $f_i = 0$. Let $\Omega_1, \dots, \Omega_n$ be the regions cut out by \mathcal{H} . The closure $\overline{\Omega}_j$ of Ω_j is a subset of \mathbb{R}^d by adding equality for each inequality defining Ω_j . For example, if Ω_1 is defined by inequalities, $f_1 > 0, \dots, f_n > 0$, then $\overline{\Omega}_1$ is defined by $f_1 \ge 0, \dots, f_n \ge 0$.

Definition 2. For any point $u \in \mathbb{R}^d$, let $v \in \overline{\Omega}_j$ be the closest point from $\overline{\Omega}_j$ to u. In other words, the distance between v and u is equal to the distance between $\overline{\Omega}_j$ and u. If the point v is lying on a k-dimensional element in the intersection poset $P(\mathcal{H})$, and not on any k - 1-dimensional element, then we say it has projection dimension $\dim(u, \Omega_j) = k$ from u to Ω_j .

- 1. Let $\mathcal{L} = \{l_1, l_2\}$ be a line arrangement on \mathbb{R}^2 defined by $l_1: x_1 = 0$, and $l_2: x_1 + x_2 = 0$. Find the projection dimension for any point $u \in \mathbb{R}^2$ and each region cut out by \mathcal{L} .
- 2. Let \mathcal{L} be any line arrangement on \mathbb{R}^2 . Consider the regions cut out by \mathcal{L} . For a fixed $u \in \mathbb{R}^2$, let a_k be the number of regions such that the projection dimension from u is equal to k. Prove that a_k is a constant if u is outside a finite union of lines. And the characteristic polynomial $\chi_{\mathcal{L}}(t)$ is $t^2 a_1 t + a_0$.
- 3. Prove similar result for plane arrangements in \mathbb{R}^3 , or general \mathbb{R}^d .
- 4. Use this result to reprove Zaslavsky's theorem.

Project 3. In this project, you will investigate the properties of torus arrangements.

Let $T^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ be the set of complex numbers with unit length. Similarly, we define

$$T^{d} = \{(z_{1}, z_{2}, \cdots, z_{d}) \mid z_{i} \in \mathbb{C}, |z_{i}| = 1\}$$

A hypertorus H is defined by equation

$$z_1^{a_1}\cdots z_n^{a_d}=c$$

for integers a_i and complex number c with unit length. Here $(a_1, \dots, a_d) \neq (0, 0, \dots, 0)$.

- 1. Show by example that H may not be connected.
- 2. Show by example that when two hypertoruses H_1 and H_2 are connected, their intersection may not be connected.
- 3. Find a condition for H to be connected. (Hint: if the greatest common divisor of a_1, \dots, a_d is 1, then the vector $\vec{n} = (a_1, a_2, \dots, a_d)$ can be extended to an invertible integer matrix with \vec{n} as the first column.)
- 4. Construct a bijection between disjoint union of several copies of T^{d-1} and H.
- 5. Consider a collection \mathcal{H} of finitely many hypertoruses H_i in T^d , construct an intersection poset $P(\mathcal{H})$ consisting of connected components of intersections of H^i . Is this poset a lattice? Is it graded?
- 6. Is the number of connected components in $T^d \bigcup_i H_i$ still related to the characteristic polynomial of $P(\mathcal{H})$ the same as Zaslavsky theorem?
- 7. Let G = (V, E) be a graph with d vertices $1, \dots, d$. For each edge connecting i and j, define a hypertorus $H_{ij} = \{z_i = z_j\}$. This forms a collection of hypertorus \mathcal{H} . Is the chromatic polynomial still equal to the characteristic polynomial of $P(\mathcal{H})$?
- 8. Find a relation between the number of regions for graphic torus arrangement and the chromatic polynomial.