ALGEBRAIC COMBINATORICS II, HOMEWORK 1 DUE JULY 26 AT 5:30PM

Some ground rules:

- Feel free to use English, Chinese, or both, in your solutions.
- Write your argument as clear as possible, and make sure the writing in your submission is clear.
- Feel free to use results that are proved in class. If you'd like to use other results, you have to prove them before using them.
- You're encouraged to work together on the assignments. In your solutions, you should acknowledge the students with whom you worked, and should **write solutions on your own**.

Problems:

(1) Prove the following statements.

- (a) Prove that any set with a binary operator (S, \circ) has at most one identity element.
- (b) Let (S, ∘, e) be a set with an associative binary operator and an identity element. Prove that any element in S has at most one inverse. (Does the statement still hold without the "associativity" assumption on (S, ∘)?)
- (c) Let $f: G \to H$ be a group homomorphism. Prove that:
 - (i) it preserves the identity: $f(e_G) = e_H$;
 - (ii) it preserves the inverses: $f(g^{-1}) = f(g)^{-1}$ for any $g \in G$.

(2) Let n be a positive integer. Euler's function $\varphi(n)$ counts the numbers in $\{1, 2, \ldots, n\}$ that are relatively prime to n.

Let G be a group that is isomorphic to $\mathbb{Z}/n\mathbb{Z}$. Prove that there are exactly $\varphi(n)$ elements in G that have order n.

(3) The next two problems concern isometries of \mathbb{R}^n . In this course, we always equip \mathbb{R}^n with the standard Euclidean metric, i.e. for $\vec{x} = (x_1, \ldots, x_n)$ and $\vec{y} = (y_1, \ldots, y_n)$ we have

$$d(\vec{x}, \vec{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

Let $O(n, \mathbb{R})$ be the set of isometries of \mathbb{R}^n that preserve the origin $\vec{0} \in \mathbb{R}^n$, i.e.

$$\mathcal{O}(n,\mathbb{R}) = \left\{ T \colon \mathbb{R}^n \to \mathbb{R}^n \mid T \text{ is an isometry and } T(\vec{0}) = \vec{0} \right\}.$$

Prove that for any isometry $f : \mathbb{R}^n \to \mathbb{R}^n$, there exist $T \in O(n, \mathbb{R})$ and $\vec{v} \in \mathbb{R}^n$ such that

 $f(\vec{x}) = T(\vec{x}) + \vec{v}$ holds for any $\vec{x} \in \mathbb{R}^n$.

In other words, any isometry of \mathbb{R}^n can be written as a composition of an origin-preserving isometry and a translation.

(4) In this problem, you'll prove that any origin-preserving isometry of \mathbb{R}^n is *linear*. We say a function $T: \mathbb{R}^n \to \mathbb{R}^n$ is *linear* if for any $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ we have $T(\vec{x}+\vec{y}) = T(\vec{x})+T(\vec{y})$ and $T(\lambda \vec{x}) = \lambda T(\vec{x})$.

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be an origin-preserving isometry, i.e. an isometry with $g(\vec{0}) = \vec{0}$.

(a) Denote the *inner product* of $\vec{x} = (x_1, \ldots, x_n)$ and $\vec{y} = (y_1, \ldots, y_n)$ by

$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + \dots + x_n y_n$$

In particular, $\langle \vec{x}, \vec{x} \rangle = x_1^2 + \dots + x_n^2 = d(\vec{x}, \vec{0})^2$. Denote $||\vec{x}|| \coloneqq d(\vec{x}, \vec{0}) = \sqrt{\langle \vec{x}, \vec{x} \rangle}$. Prove that

$$\langle \vec{x}, \vec{y} \rangle = \frac{1}{2} \left(||\vec{x}||^2 + ||\vec{y}||^2 - ||\vec{x} - \vec{y}||^2 \right),$$

and prove that g preserves the inner product, i.e. $\langle g(\vec{x}), g(\vec{y}) \rangle = \langle \vec{x}, \vec{y} \rangle$ for any $\vec{x}, \vec{y} \in \mathbb{R}^n$.

- (b) It is easy to show that the inner product on \mathbb{R}^n satisfies the following properties: (you don't have to prove these properties in your homework)
 - (symmetric) $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$.
 - (linearity in the first component) $\langle \vec{x}_1 + \vec{x}_2, \vec{y} \rangle = \langle \vec{x}_1, \vec{y} \rangle + \langle \vec{x}_2, \vec{y} \rangle$ and $\langle \lambda \vec{x}, \vec{y} \rangle = \lambda \langle \vec{x}, \vec{y} \rangle$. Note that it is also linear in the second component since it is symmetric.
 - (positive definiteness) $\langle \vec{x}, \vec{x} \rangle > 0$ for any $\vec{x} \neq \vec{0}$.

Using the above properties, along with what we proved in (a) that g is inner-product preserving, prove that $||g(\vec{x} + \vec{y}) - g(\vec{x}) - g(\vec{y})||^2 = 0$ and $||g(\lambda \vec{x}) - \lambda g(\vec{x})||^2 = 0$, then conclude that g is linear.

- (5) Let $f: G_1 \to G_2$ be a group homomorphism.
 - (a) Prove that if f is injective and G_2 is abelian, then G_1 is abelian.
 - (b) Prove that if f is surjective and G_1 is abelian, then G_2 is abelian.

(6) Let G be a group and g_1, \ldots, g_n be elements of G. Prove that the following two statements are equivalent:

- (a) any $g \in G$ can be written as $g = g_{i_1}^{a_1} g_{i_2}^{a_2} \cdots g_{i_k}^{a_k}$ for some $i_1, \ldots, i_k \in \{1, \ldots, n\}$ and $a_1, \ldots, a_k \in \mathbb{Z}$;
- (b) the smallest subgroup of G that contains g_1, \ldots, g_n is the group G itself.

In this case, we say $\{g_1, \ldots, g_n\}$ generates the group G.

(7) Let G be a finite group, and g be an element of G. Prove that the order of g divides the order of G.