ALGEBRAIC COMBINATORICS II, HOMEWORK 2 DUE AUGUST 1 AT 5:30PM

Some ground rules:

- Feel free to use English, Chinese, or both, in your solutions.
- Write your argument as clear as possible, and make sure the writing in your submission is clear.
- Feel free to use results that are proved in class. If you'd like to use other results, you have to prove them before using them.
- You're encouraged to work together on the assignments. In your solutions, you should acknowledge the students with whom you worked, and should **write solutions on your own**.

Problems:

(1) Prove that to "give a map

$$G \times X \to X; \quad (g, x) \mapsto g \cdot x$$
 satisfying:

- $e_G \cdot x = x$ for any $x \in X$,
- $g \cdot (h \cdot x) = (gh) \cdot x$ for any $g, h \in G$ and $x \in X$;"

is equivalent to "give a group homomorphism $G \to S_X$ ".

(2) For $n \geq 3$, prove that for any non-identity element $\sigma \in S_n$, there exists $\tau \in S_n$ such that $\sigma \tau \neq \tau \sigma$. (Hint: Since $\sigma \neq e$, there exists $i, j \in \{1, \ldots, n\}$ such that $\sigma(i) \neq j$. Since $n \geq 3$, there exists an element $k \in \{1, \ldots, n\}$ different from i and j. Now, consider $\tau = (ik)$.)

(3) In this exercise, we prove more properties of symmetric groups and alternating groups.

- (a) Prove that the transpositions $(12), (13), \ldots, (1n)$ together generate S_n . (Hint: (ab) = (1a)(1b)(1a).)
- (b) Prove that for $n \ge 3$, the 3-cycles generate A_n . In other words, any element in the alternating group can be written as $(a_1b_1c_1)\cdots(a_kb_kc_k)$. (Hint: (1a)(1b) = (1ba).)
- (c) Let $H \subseteq S_n$ be an index 2 subgroup. Prove that $H = A_n$. (Hint: Suppose (123) $\notin H$, show that then H, (123)H, (132)H are three disjoint left cosets of H.)

(4) Prove the following relations between the whole symmetry groups Aut(-) and the rotational symmetry groups $Aut^+(-)$.

- (a) Let T be a tetrahedron. Prove that $\operatorname{Aut}(T) \cong \operatorname{Aut}^+(T) \times (\mathbb{Z}/2\mathbb{Z})$.
- (b) Let C be a cube. Prove that $\operatorname{Aut}(C) \cong \operatorname{Aut}^+(C) \times (\mathbb{Z}/2\mathbb{Z})$.

(5) We are given a necklace with n beads, arranged in a cycle. We would like to put a color on each of the beads. Suppose there are m available colors that we can use.

- (a) What is the number of distinct necklaces, counted up to rotations?
- (b) What is the number of distinct necklaces, counted up to rotations and reflections?