Homework 2

Exercise 1. Find all the solutions to the following equations.

1. $x^3 - 6x - 6 = 0$ and $x^3 - 3x - 4 = 0$.

2. $x^3 + 6x - 20 = 0$ and $x^3 - 3x + 2 = 0$. Show that $\sqrt[3]{10 + 6\sqrt{3}} = 1 + \sqrt{3}$. What is going on?

3. $x^3 - 3x + 1 = 0$. Find another solution using cos.

4. $x^3 + 2x^2 - 5x + 1 = 0$. Show that all solutions are real numbers.

Exercise 2. Let p be a prime.

1. Show using the p-adic valuation that

$$p \mid \binom{p}{r}$$

if $1 \le r \le p - 1$.

2. Show that

$$\frac{(x+1)^p - 1}{x}$$

is irreducible in $\mathbb{Q}[x]$.

3. Deduce that Φ_p is the minimal polynomial of ζ_p in $\mathbb{Q}[x]$.

Problem 1. Recall that $\varphi(n) = |\mathbb{U}'_n| = \deg \Phi_n$.

1. Let p be a prime number. Show that $\varphi(p) = p - 1$.

Let $\zeta \in \mathbb{C}$ be a root of unity of exact order n and let $\xi \in \mathbb{C}$ be a root of unity of exact order m with $n \wedge m = 1$.

- 2. Show that $\zeta \xi$ is a root of unity of exact order nm.
- 3. (a) Show that $x \mapsto x^m$ is a bijective map from \mathbb{U}'_n to itself.
 - (b) Deduce from that that any $\psi \in \mathbb{U}'_{nm}$ can be written $\psi = \zeta \xi$ with $(\zeta, \xi) \in \mathbb{U}'_n \times \mathbb{U}'_m$.
- 4. Show by giving counterexamples that all the statements above can definitely be false without the hypothesis $n \wedge m = 1$.

1

- 5. Conclude that $\varphi(nm) = \varphi(n)\varphi(m)$ if $n \wedge m = 1$.
- 6. Compute $\varphi(2024)$.