Homework 3

Conventions We write 1_n for a generator of the cyclic group $\mathbb{Z}/n\mathbb{Z}$. If $x \in \mathbb{N}$, we write x_n for the sum $1_n + \cdots + 1_n$ repeated x times. If x is a negative relative number, we write $-x_n$ for the opposite of x_n in $\mathbb{Z}/n\mathbb{Z}$.

Problem 1 (Cyclic groups). 1. Find all the generators of the cyclic group $\mathbb{Z}/15\mathbb{Z}$.

- 2. What is the image of \mathbb{U}'_n in an isomorphism between \mathbb{U}_n and $\mathbb{Z}/n\mathbb{Z}$?
- 3. Draw the lattice of all subgroups of Z/7Z, Z/16Z and Z/30Z. List explicitly the elements of each subgroups (it is OK to use the last question of this problem to justify your answer).
- 4. Let G be a finite cyclic group. Let $a \in G$ be a generator (by definition, this means that $\langle a \rangle = G$).
 - (a) Show that $H_d \stackrel{\text{def}}{=} \langle a^{n/d} \rangle$ is a subgroup of G. What is $|H_d|$?
 - (b) Let $H'_d \subset G$ be a subgroup of cardinality d.
 - i. Show that $\{x \in \mathbb{Z} | a^x \in H'_d\}$ is a non-zero subgroup of \mathbb{Z} . Let y be its smallest strictly positive element.
 - ii. Show that $\langle a^y \rangle = H'_d$.
 - iii. En déduire que $H_d = H'_d$.
- 5. Conclude that all subgroups of finite cyclic groups are finite cyclic groups and that a finite cyclic group of cardinality n has exactly one subgroup of cardinality d a divisor of n.

Problem 2 (Product of groups). If G and H are groups with group operations \cdot and * respectively, we consider the set

$$G \times H \stackrel{\text{def}}{=} \{(g,h) | g \in G, h \in H\}$$

with the operation \circ defined by

$$(g,h) \circ (g',h') \stackrel{\text{def}}{=} (g \cdot g',h*h').$$

- 1. The aim of this question is to show that $G \times H$ with \circ is a group.
 - (a) Briefly show that \circ is associative (any answer which is more than 4 lines is wrong).
 - (b) What the identity element of $G \times H$? What is the inverse of (g, h) for \circ ?
- 2. What is the cardinality of $G \times H$ (assuming that G and H are finite groups)?
- 3. Let $(n,m) \in \mathbb{N}^2$ be two non-zero numbers. We study the group $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.
 - (a) Give an explicit of elements of Z/2Z × Z/2Z and Z/2Z × Z/3Z. Are these groups cyclic? If so, find a generator. Is Z/3Z × Z/3Z isomorphic to Z/9Z?
 - (b) Assume that $n \wedge m = 1$. Show that $x_{nm} \mapsto (x_n, x_m)$ is an isomorphism of groups from $\mathbb{Z}/n\mathbb{Z}$ to $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.
- 4. Give a group-theoretic proof of the fact that (n!m!) | (n+m)! (hint: think of the permutation action on $\{1, \dots, n+m\}$ and of the stabilizer of $\{1, \dots, n\}$).
- 5. Write the lattice of subgroups of $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

Problem 3 (Dihedral groups). Let $n \ge 2$ be an integer. Let X be the unit circle, that is to say the set

$$X \stackrel{\text{def}}{=} \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\} = \{ z \in \mathbb{C} | z\bar{z} = 1 \}.$$

Let Γ be the group of isometries of \mathbb{R}^2 (we admit that this is a group). Let D_{2n} be the stabilizer in Γ of \mathbb{U}_n .

- 1. (a) Show that D_{2n} is a group
 - (b) Show that

$$\sigma_n: z \longmapsto e^{\frac{2\pi i}{n}} z, \ \tau: z \longmapsto \bar{z}.$$

belong to D_{2n} .

- (c) Is D_{2n} a commutative group? (Be careful and precise.)
- (d) What are the cardinality of $\langle \sigma_n \rangle$ and $\langle \tau \rangle$?
- (e) Show by induction that if $\gamma \in D_{2n}$ sends 1 to 1 and $e^{\frac{2\pi i}{n}}$ to $e^{\frac{2\pi i}{n}}$, then it is the identity.
- (f) Show that any $\gamma \in D_{2n}$ can be written $\gamma = \sigma_n^r$ or $\gamma = \tau \sigma_n^r$ for some $r \in \mathbb{Z}/n\mathbb{Z}$.
- (g) Explain how we can recognize whether $g = \sigma^r$ or $g = \tau \sigma^r$ geometrically in terms of action of g on \mathbb{U}_n .
- 2. Deduce $|D_{2n}|$ from all sub-questions of the previous question.
- 3. Let g be an element of D_{2n} .
 - (a) Suppose $g = \tau \sigma^r$. What is $|\langle g \rangle|$?
 - (b) Suppose now that $g = \sigma^r$. What is $|\langle g \rangle|$?
- 4. Show that D_6 is isomorphic to \mathfrak{S}_3 .
- 5. Consider $n \geq 3$. Show that D_{2n} is isomorphic to a subgroup of \mathfrak{S}_n by constructing an explicit isomorphism.
- 6. Write the lattice of subgroups of D_6 (have you seen this lattice in your life before?).