ALGEBRA AND TOPOLOGY HOMEWORK EIGHT DUE: NONE

You don't have to hand in Homework Eight. Instead, I encourage you to work on and focus on your research project. I am giving you the homework only for the sake of completeness of the lecture.

Exercise 1 (Invariance). This exercise is about the invariance of the group homomorphisms induced from simplicial approximations. The aim is to prove the following theorem.

Theorem 0.1 (Invariance Theorem). Let $f: S \to T$ be a continuous transformation and $\tau: \mathcal{K} \to \mathcal{L}$ be a simplicial approximation for f. Then the induced map $\tau_k: \operatorname{H}_k(S; \mathbb{Z}) \to \operatorname{H}_k(T; \mathbb{Z})$ is the same for all simplicial approximations of f and for every k.

(a) Let τ and σ be two simplicial approximations of f from the same triangulation \mathcal{K} of S to the same triangulation \mathcal{L} of T. Then τ_k and σ_k are homologous, i.e. for every k-chain $\Delta \in S_k(\mathcal{K}; \mathbb{Z})$ there exists a (k+1)-chain $\tilde{\Delta} \in S_{k+1}(\mathcal{L}; \mathbb{Z})$ such that

$$\tau_k(\Delta) - \sigma_k(\Delta) = \partial_{k+1} \tilde{\Delta} \in S_k(\mathcal{L}; \mathbf{Z}).$$

Hint: Consider the diagram

Construct the maps D_k as indicated above with the property that

(0.1)
$$\tau_k - \sigma_k = \partial_{k+1} \circ D_k + D_{k-1} \circ \partial_k.$$

Certainly, $D_{-1} = D_2 = 0$. You can construct D_0 via

$$D_0(P) := \overline{\tau(P)\sigma(P)}.$$

How do you construct D_1 ? If (0.1) holds, show that τ_k and σ_k give the same map from $H_k(\mathcal{K}; \mathbb{Z})$ to $H_k(\mathcal{L}; \mathbb{Z})$.

(b) Let \mathcal{K}^+ be the barycentric subdivision of \mathcal{K} . Consider the identity transformation $\iota \colon \mathcal{K}^+ \to \mathcal{K}$ by regarding both sides as topological spaces. Find a simplical approximation of ι and show that it induces an isomorphism from $\mathrm{H}_k(\mathcal{K}^+; \mathbf{Z})$ to $\mathrm{H}_k(\mathcal{K}; \mathbf{Z})$ which inverts the group homomorphism from $\mathrm{H}_k(\mathcal{K}; \mathbf{Z})$ to $\mathrm{H}_k(\mathcal{K}^+; \mathbf{Z})$ induced by subdivisions. (c) Let S, T, and U be topological spaces with triangulations \mathcal{K}, \mathcal{L} , and \mathcal{M} . Suppose $f: S \to T$ and $g: T \to U$ are two continuous transformations with simplicial approximations τ and σ . Show that $\mu := \sigma \circ \tau \colon \mathcal{K} \to \mathcal{M}$ is a simplicial approximation of $g \circ f$ and

$$\mu_k = \sigma_k \circ \tau_k$$

for every k.

(d) Conclude the theorem using (a) and (b) and the fact that any two triangulartions of a sequentially compact surface have a common refinement.

The conclusion of Theorem leads to the following definition.

Definition 0.2. Let $f: S \to T$ be a continuous transformation between surfaces with S sequentially compact. Define

$$\operatorname{H}_k(f) \colon \operatorname{H}_k(S; \mathbf{Z}) \to \operatorname{H}_k(T; \mathbf{Z})$$

to be the group homomorphism $H_k(\tau)$ for any simplicial approximation τ of f.

 $\mathbf{2}$