ALGEBRA AND TOPOLOGY HOMEWORK SEVEN DUE: 8/12

There are two different types of labels: alphabets and numbers. You will be asked to write up your solutions to those exercises labelled by alphabets A, B, \ldots only. The rest is for fun.

Exercise A. Let \mathcal{K} be a directed complex and consider the integral homology theory on \mathcal{K} .

- (a) Give the definition of incidence coefficients and incidence matrices in integral homology theory.
- (b) Show that $\partial_1 \circ \partial_2 = 0$ on any complex \mathcal{K} .

Exercise B. Show that if a surface S is connected, then $b_0(S; \mathbb{F}_2) := \dim H_0(S; \mathbb{F}_2) = 1$. Moreover, if S is sequentially compact, then we have $b_2(S; \mathbb{F}_2) = \dim H_2(S; \mathbb{F}_2) = 1$. Conclude that for any sequentially compact and connected surface S, the Euler characteristric is given by

$$\chi(S) = 2 - \dim \operatorname{H}_1(S; \mathbb{F}_2).$$

Exercise 1. Calculate the integral homology groups for Klein bottle K. Moreover, what are the integral Betti numbers? Are they the same as the Betti numbers $b_k(K; \mathbb{F}_2)$? How about the Euler characteristics?

Exercise 2. Consider the group

$$G := \{A \in \operatorname{Mat}_{3 \times 3}(\mathbf{R}) \mid \det(A) = 1 \text{ and } A^{\mathsf{T}}A = AA^{\mathsf{T}} = I_3\}$$

and a subset

$$H := \left\{ A \in G \ \Big| \ H \text{ is of the form } \begin{bmatrix} a_{11} & a_{12} & 0\\ a_{21} & a_{22} & 0\\ 0 & 0 & 1 \end{bmatrix} \right\}$$

Show that H is a subgroup. Can you describe the quotient (cotset space) S := G/H geometrically? Certainly G is equipped with a topology inherited from the metric topology on \mathbf{R}^9 (the induced topology). Calculate the integral homology groups for S.