Introduction to Continued Fractions (Lecture No. 2, 22.07.2024).

- 1. What is Euclidean algorithm and how it is related to continued fractions of rational numbers?
- 2. Formal infinite continued fraction.

$$
[a_0; a_1, a_2, ..., a_{\nu}, ...], \quad a_0 \in \mathbb{Z}, \quad a_j \in \mathbb{Z}_+, j = 1, 2, 3, ... \tag{1}
$$

 a_i - partial quotients,

$$
\frac{p_{\nu}}{q_{\nu}} = [a_0; a_1, a_2, ..., a_{\nu}] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_{\nu}}}}, \quad (p_{\nu}, q_{\nu}) = 1 - \text{ convergents.}
$$

3. Recursive formulas for the convergents' numerators and denominators.

$$
p_{\nu+1} = a_{\nu+1}p_{\nu} + p_{\nu-1}, \quad q_{\nu+1} = a_{\nu+1}q_{\nu} + q_{\nu-1}, \quad p_{\nu}q_{\nu-1} - q_{\nu}p_{\nu-1} = (-1)^{\nu-1}.
$$

- 4. The value of continued fraction (1). Prove that
- a. $\frac{p_{2\nu}}{q_0}$ is an increasing sequence;
- $\frac{q_{2\nu}}{q_{2\mu+1}}$ is a decreasing sequence; c. $\frac{p_{2\nu}}{q_{2\nu}} < \frac{p_{2\mu+1}}{q_{2\mu+1}}$ $\frac{p_{2\mu+1}}{q_{2\mu+1}}$ for all $\mu, \nu;$

d.
$$
\left| \frac{p_{\nu}}{q_{\nu}} - \frac{p_{\nu+1}}{q_{\nu+1}} \right| = \frac{1}{q_{\nu}q_{\nu+1}};
$$

e. there exists $\lim_{\nu \to \infty} \frac{p_{\nu}}{q_{\nu}}$ $\frac{p_{\nu}}{q_{\nu}}$ which is called the value of continued fraction (1).

5. For every real number α there exists a continued fraction of the form (1) which value is α .

6. Problem of uniqueness. Prove that every irrational number has the unique representation as a value of a continued fraction of the form (1). What happens with rational numbers, and what is the correct statement about uniqueness for rationals?

7. Prove that

$$
||q_\nu\alpha||=\frac{1}{q_\nu(\alpha_{\nu+1}+\alpha^*_\nu)},
$$

where

$$
\alpha_{\nu+1} = [a_{\nu+1}; a_{\nu+2}, a_{\nu+3}, \ldots], \quad \alpha_{\nu}^* = [0; a_{\nu}, a_{\nu-1}, \ldots, a_1].
$$

8. Lagrange Theorem. α is a quadratic irrationality if and only if its continued fraction is eventually periodic.

9. Zaremba's Conjecture.

$$
\forall q \in \mathbb{Z}_{+} \quad \exists a: \quad (a,q) = 1 \quad \text{such that in c.f. expansion} \quad \frac{a}{q} = [0; a_1, ..., a_t] \quad \text{one has} \quad a_j \leqslant 5, \ \forall j.
$$

(We will not prove it.)

Exercises.

- 1. Prove that for any α and for any ν one has $q_{\nu} \geqslant \left(\frac{1+\sqrt{5}}{2}\right)$ $\frac{1-\sqrt{5}}{2}$)^{v-1}.
- 2. Valen's Theorem. For any ν either

$$
q_{\nu}||q_{\nu}\alpha||<1/2,
$$

$$
q_{\nu+1}||q_{\nu+1}\alpha|| < 1/2
$$

holds.

3. Suppose that in (1) $a_0 \ge 1$. Prove that $\frac{p_n}{p_{n-1}} = [a_n; a_{n-1}, ..., a_0]$.

4. Prove that
\na.
$$
\sqrt{d^2 + 1} = [d; \overline{2d}];
$$

\nb. $\sqrt{d^2 + 2} = [d; \overline{d}, 2\overline{d}];$
\nc. $\left[2; 2, ..., 2\right] = \frac{(1 + \sqrt{2})^{n+1} - (1 - \sqrt{2})^{n+1}}{(1 + \sqrt{2})^n - (1 - \sqrt{2})^n}.$

5. Prove that each rational number $\frac{a}{b}$ can be represented in a form

$$
b_0 - \cfrac{1}{b_1 - \cfrac{1}{b_2 - \dots - \cfrac{1}{b_\nu}}}
$$
\n(2)

with $b_j \geq 2, j = 1, 2, ..., \nu$.

- 6. Prove Zaremba's Conjecture for
- a. $q = F_n$ Fibonacci numbers;
- b. $q = 2^n;$
- c. for all the numbers of the form $q = 2^n 3^m$;

d. for representation of rationals as continues fractions (2), that is, you should prove that for any $q \in \mathbb{Z}_+$ there exists $a \in \mathbb{Z}$ such that $(a, q) = 1$ and in the decomposition

$$
b_0 - \cfrac{1}{b_1 - \cfrac{1}{b_2 - \cdots - \cfrac{1}{b_\nu}}}
$$

we have $b_j \leqslant 5 \forall j$.

or