Basic Number Theory: Euler, Möbius and Farey. Lecture 5. 25.07.2024

0. Basic sums.

$$
\sum_{n=1}^{N} \frac{1}{n} = \log N + \gamma + \frac{\theta_N}{N},
$$
 where θ_N is bounded;
$$
\sum_{p \le x} \frac{1}{p} \to \infty, x \to \infty;
$$

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} = \zeta(2) = \frac{\pi^2}{6}.
$$

- 1. Let us recall the definitions of
- a. Euler Function

$$
\varphi(n) = \#\{x \in \mathbb{Z} : 1 \le x \le n, (x, n) = 1\};
$$

b. Möbius function

$$
\mu(n) = \begin{cases} 1, & n = 1, \\ 0, & p \text{ prime}, \quad p^2 | n, \\ (-1)^r, & n = p_1 \cdots p_r \quad - \text{ different primes.} \end{cases}
$$

- c. Number of divisors function $\tau(n) = \sum_{d|n} 1$.
- d. Sum of divisors function $\sigma(n) = \sum_{d|n} d$. These functions are multiplicative.
- A function $f(x), x \in \mathbb{Z}_+$ is multiplicative if

$$
f(nm) = f(n)f(m)
$$
 for all $n, m \in \mathbb{Z}_+$ under the condition $(n, m) = 1$.

2. Most important formulas:

$$
\sum_{d:d|n} \mu(d) = \begin{cases} 1, & n = 1, \\ 0, & n > 1. \end{cases} \quad \varphi(n) = n \cdot \sum_{d:d|n} \frac{\mu(d)}{d}, \quad \sum_{d:d|n} \varphi(d) = n.
$$

- 3. What are sums $\sum_{n=1}^{\infty}$ $\frac{1}{n^2}$ and $\sum_{n=1}^{\infty}$ $rac{\mu(n)}{n^2}$?
- 4. Consider the sum

$$
g_N(x) = \sum_{q: q \leq N} \sum_{1 \leq a \leq xq} \sum_{d: d \mid g.c.d.(a,q)} \mu(d).
$$

Prove that

$$
g_N(1) = \sum_{q \leq N} \varphi(q).
$$

What is the meaning of this sum when $x \in [0, 1]$?

5. Find limits

$$
\lim_{N \to \infty} \frac{g_N(1)}{N^2}, \quad \lim_{N \to \infty} \frac{g_N(x)}{N^2} \text{ and } \lim_{N \to \infty} \frac{g_N(x)}{g_N(1)}.
$$

6. Consider Farey series

$$
\mathcal{F}_N = \left\{ \frac{p}{q} \in [0,1]: \ q \le N \right\}.
$$

a. Now many numbers are there in \mathcal{F}_N ?

b. Show that $g_N(x) = \#\{\xi \in \mathcal{F}_N : \xi \leq x\}$ and calculate the limit

$$
\lim_{N \to \infty} \frac{g_N(x)}{\# \mathcal{F}_N}, \quad x \in [0, 1].
$$

7. Other mean values: calculate limits

$$
a. \lim_{x \to \infty} \frac{\sum_{n \leq x} \varphi(n)}{x^2};
$$
 $b. \lim_{x \to \infty} \frac{\sum_{n \leq x} \tau(n)}{x \log x};$ $c. \lim_{x \to \infty} \frac{\sum_{n \leq x} \sigma(n)}{x^2};$ $d. \lim_{x \to \infty} \frac{\sum_{n \leq x} \mu(n)}{x};$

Exercises.

1. Möbius inversion formula. Let $g(x)$ and $G(x)$ be two functions of $x \in \mathbb{Z}_+$. Then

$$
G(n) = \sum_{d|n} g(d) \iff g(n) = \sum_{d|n} \mu(d)G\left(\frac{n}{d}\right).
$$

2. Let $\tau(n) = \sum_{d|n} 1$ be the number of divisors of n and $\sigma(n) = \sum_{d|n} d$ be the sum of divisors of n. Calculate sums a. $\sum_{d|n} \mu(d) \tau(n/d);$

- b. $\sum_{d|n} \mu(d) \sigma(n/d)$.
- 3. Dirichlet series. Consider infinite sums

$$
\sum_{n=1}^{\infty} \frac{f(n)}{n^2}
$$
 and
$$
\sum_{m=1}^{\infty} \frac{g(m)}{m^2}.
$$

Let us write the product in a form

$$
\left(\sum_{n=1}^{\infty} \frac{f(n)}{n^2}\right) \cdot \left(\sum_{m=1}^{\infty} \frac{g(m)}{m^2}\right) = \sum_{k=1}^{\infty} \frac{h(k)}{k^2}.
$$

What is $h(\cdot)$? (We suppose that we can change the order of INFINITE summation everywhere, for example this is possible when the series are absolutely convergent.)

- 4. Calculate sum $\sum_{n \leq x} \mu(n) \left[\frac{x}{n} \right]$ $\frac{x}{n}$.
- 5. Calculate the limits from 7. which were not calculated during the lecture.
- 6. Prove that

a.
$$
\forall \varepsilon > 0
$$
 $\lim_{n \to \infty} \frac{\tau(n)}{n^{\varepsilon}} = 0$.
b. $\forall A > 0$ $\limsup_{n \to \infty} \frac{\tau(n)}{(\log n)^A} = \infty$.

- 7. Find all limit points of the sequence $\frac{\varphi(n)}{n}$. Simplification: does there exist a sequence n_k such that $\lim_{k\to\infty} \frac{\varphi(n_k)}{n_k}$ $\frac{(n_k)}{n_k} = 0$?
- 8. For two functions $f(n)$, $g(n)$, $n \in \mathbb{Z}_+$ define the operation

$$
(f \circ g)(n) = \sum_{d|n} f(d)g(n/d).
$$

This operation is called Dirichlet convolution.

8.1. Prove that it is commutative (that is $f \circ g = g \circ f$) and associative (that is $f \circ (g \circ h) =$ $(f \circ g) \circ h$).

8.2. Write formulas from 1.2. Möbius inversion formula, formulas from exercises 2 and 3 in terms of ∘.

Suggestion: you should use functions

$$
I(x) = 1 \,\forall x, \ E(x) = x \,\forall x, \ J(x) = \begin{cases} 1, & x = 1, \\ 0, & x > 1. \end{cases}
$$