Lagrange spectrum and Hall's Ray (Lecture 9, 31 July 2024).

For a real α consider irrationality measure function

$$\psi_{\alpha}(t) = \min_{1 \le x \le t, \, x \in \mathbb{Z}} ||x\alpha||$$

Largange Theorem. $\psi_{\alpha}(t) = ||q_{\nu}\alpha||$ for $q_{\nu} \leq t < q_{\nu+1}$.

Lagrange constant

$$\lambda(\alpha) = \liminf_{t \to +\infty} t \cdot \psi_{\alpha}(t),$$

and Dirichlet constant

$$d(\alpha) = \limsup_{t \to +\infty} t \cdot \psi_{\alpha}(t).$$

What is the maximal and minimal possible values of value of $\lambda(\alpha)$ and $d(\alpha)$? The Lagrange spectrum \mathbb{L} is defined as

$$\mathbb{L} = \{\lambda \in \mathbb{R} \setminus \mathbb{Q} : \text{ there exists } \alpha \in \mathbb{R} \text{ such that } \lambda = \lambda(\alpha) \}.$$

The Dirichlet spectrum \mathbb{D} is defined as

$$\mathbb{D} = \{ d \in \mathbb{R} : \text{ there exists } \alpha \in \mathbb{R} \setminus \mathbb{Q} \text{ such that } d = d(\alpha) \}.$$

 ${\bf Theorem.} \ \exists \, \lambda^* > 0: \ \ [0,\lambda^*] \subset \mathbb{L}.$

This theorem follows from the

Main Lemma. Suppose that

$$K_r = \{ \alpha \in [0,1] \setminus \mathbb{Q}; \ \alpha = [0;a_1,...,a_n,...]: \ a_j \le r \ \forall j \}.$$

Then $K_4 + K_4$ is a segment.

Plan of the proof of Main Lemma.

A. What is the definition of τ -thick set

$$K = I \setminus \left(\bigcup_j \Delta_j\right),$$

where I is a segment and $\Delta_j \subset I$ are subintervals of I which do not intersect each other? B. If K is a 1-thick set, than K + K is a segment. C. K_4 is an 1-thick set.

Exercises.

1. Prove that if

$$\alpha = [0; a_1, ..., a_n, x], \quad \beta = [0; a_1, ..., a_n, y]$$

then

$$|\alpha - \beta| = \frac{|x - y|}{(xq_n + q_{n-1})(yq_n + q_{n-1})}$$

2. a. Prove that all the numbers form [0, 1] can be written which can be written as a sum of two numbers: the first summand can be written in the base 3 without digit 1 and simultaneously the second summand can be written in the base 5 without digit 2.

b. Prove that there exist a number α of the form $\alpha = [0; a_1, ..., a_n, ...]$: $a_j \leq 4$, which can be written in the base 3 without digit 1.

3. Suppose that $\tau_1 \cdot \tau_2 \geq 1$. Prove that any two τ_1 -thick set and τ_2 -thick set have non-empty intersection provided that one does not belong to a connected part of the complement to another one.

4. How thick is a. K_2 ? b. K_3 ?

- 5. Consider the set $W_k = \{ \alpha \in [0, 1] : \text{ all partial quotients of } \alpha \text{ are } \geq k \}.$
- a. Prove that $W_2 + W_2 = [0, 1]$.
- b. Prove that $W_k + \ldots + W_k = [0, 1]$ (k summands).
- 6. Prove that $K_3 + K_3 + K_3$ is a segment.

7. How many copies of K_2 one should take to have the sum $K_2 + ... + K_2$ to be a segment?

8. Prove that if a set is a τ -thick set we can throw away intervals Δ_j from I in such a way, that their lengths are decreasing. (This will preserve τ -thickness property.)

9. Prove that if in continued fraction expansion of irrational α there exist infinitely many partial quotients $a_n \geq 2$, then

a) $\lambda(\alpha) \le \frac{1}{\sqrt{8}} = \lambda(\sqrt{2})$, b) $d(\alpha) \ge d\left(\frac{1+\sqrt{3}}{2}\right)$.

11. Ray in Dirichlet spectrum. Prove that there exists $d^* < 1$ such that

 $[d^*, 1] \subset \mathbb{D} = \{ d \in \mathbb{R} : \exists \alpha \text{ such that } d = \limsup_{t \to \infty} t \cdot \psi_{\alpha}(t) \}.$