LINEAR ALGEBRA HOMEWORK 4

LECTURER: BONG H. LIAN

Assume U, V, W are F-vector spaces. Put End V = Hom(V, V).

Exercise 0.1. Let $f, g: V \to V$ be two given maps such that $f \circ g = id_V$. (a) Show that g is injective and f is surjective. (b) Assume in addition that dim $V < +\infty$ and f is linear. Show that f is injective, hence g is surjective. (Hint: Use COD.) (c) Conclude that g is bijective, and that $f = g^{-1}$ and $g \circ f = id_V$. (d) Let $A, B \in M_{n,n}$. Show that if AB = I, then BA = I. (e) Second proof. Show that if ker(BA) = (0) then ker A = (0), hence A is an isomorphism. Conclude that $B = A^{-1}$. (Hint: COD.)

Exercise 0.2. WRITE UP Let V = F[t]. In 3 lines show that there is a unique linear map $g: V \to V$ such that $g: t^n \mapsto t^{n+1}$ for $n \ge 0$. Likewise there is a unique linear map $f: V \to V$ such that $f: t^{n+1} \to t^n$ for $n \ge 0$, and $1 \mapsto 0$. Compute $f \circ g$ and $g \circ f$.

Exercise 0.3. WRITE UP Prove that for $A \in M_{n,n}$, det $A^t = \det A$. You will need the fact that sgn $\sigma^{-1} = \operatorname{sgn} \sigma$ for any bijection of $\{1, 2, ..., n\}$.

Exercise 0.4. Decide if $A = [e_3, e_1 + e_2, e_2] \in M_{3,3}$ is invertible. If so, compute A^{-1} . Here e_i are the standard unit vectors if F^3 .

Exercise 0.5. Let $U \subset V$ be a subspace and $x \in \text{End } V$ such that $xU \subset U$. In 5 lines, prove that there is a canonical map

$$\bar{x}: V/U \to V/U, v + U \mapsto xv + U.$$

That is check that this is well-defined. Show it satisfies the following: if $p(t) \in F[t]$, and p(x) = 0 in End V then $p(\bar{x}) = 0$ in End V/U.