LINEAR ALGEBRA HOMEWORK 5

LECTURER: BONG H. LIAN

Exercise 0.1. By row reduction, compute

 $\det[e_3 + e_2 + e_1, e_1 + e_2, e_2].$

Redo this it by using linearity of det in each column.

Exercise 0.2. Assume that $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2\times 2}$ is invertible. Find a formula for A^{-1} . That is to say, find each entry of A^{-1} in terms of the 4 entries a_{ij} of A. Be sure to check that you do get $AA^{-1} = A^{-1}A = I$. From this, can you guess the answer for 3×3 matrices?

Exercise 0.3. WRITE UP Prove that the minimal polynomial of a matrix $A \in M_{n,n}$ is conjugation invariant, i.e. $\mu_{g^{-1}Ag}(x) = \mu_A(x)$ for all $g \in \text{Aut}_n$. Conclude that the algebra $F[x]/\mu_A(x)F[x]$ does not change under conjugations of A.

Exercise 0.4. Compute the $\mu_A(x)$ for $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$.

Exercise 0.5. WRITE UP For a given $A \in M_{m \times n}$, propose an algorithm to compute a basis of ker A and im A by row operations. In 10 lines prove that your algorithm is correct.