LINEAR ALGEBRA HOMEWORK 7

LECTURER: BONG H. LIAN

Exercise 0.1. Decide if $A = [e_3, e_1 + e_2, e_2] \in M_3$ is invertible. If so, compute A^{-1} .

Exercise 0.2. As we have sketched in class, you will fill in the proof that there is a bijection between the set of $GL_n(F)$ -conjugation classes in $M_n(F)$, and the set of isomorphism classes of F[t]-spaces V of $\dim_F V = n$. To each matrix X, define the F[t]-space by the F-algebra map

$$\varphi_X : F[t] \to \operatorname{End} F^n \equiv M_n(F), \ t \mapsto X.$$

Argue if $g \in GL_n$, then $\varphi_{gXg^{-1}}$ defines an isomorphic F[t]-space. Verify that the correspondence $[X] \mapsto [\varphi_X]$ is a bijection from conjugation classes of matrices to isomorphism classes of F[t]-spaces.

Exercise 0.3. WRITE UP For $X \in M_n$, put $k(X) := \dim \ker X$. Assume $X^2 = 0$.

(a) Show that $k(X) \ge n/2$.

In less than 1 page, show that the following:

(a) A conjugation class [X] in sol $(X^2 = 0)$ in M_n is uniquely determined by k(X).

(b) Given any integer $k \ge n/2$, there is a unique conjugation class [X] of such solutions such that k(X) = k.

After doing this right, you will be quite close to Project 1.

Exercise 0.4. WRITE UP Let $U \subset V$ be a subspace, and let $X \in \text{End } V$. We say that U is X invariant if $XU \subset U$. In 5 lines, prove that the induced map

$$\bar{X}: V/U \to V/U, v + U \mapsto Xv + U$$

satisfies the following: if $p(t) \in F[t]$ and if p(X) = 0 in End V, then $p(\overline{X}) = 0$ in End V/U.