2024 MATHCAMP RESEARCH PROJECTS: LINEAR ALGEBRA

LECTURER: BONG H. LIAN

This is a preliminary version of the research projects, subject to change later.

0. BASIC ASSUMPTIONS AND NOTATIONS

Unless stated otherwise, we shall make the following assumptions and use the following notations. F will denote a field. You may find it easier to think about the case $F = \mathbb{R}$ or \mathbb{C} , the field of real or complex numbers. A vector space means a finite dimensional F-space, usually denoted by U, V, W, \dots Likewise a linear map means an F-linear, and an F-matrix means a matrix with entries or coefficients in F. Put

 $\begin{array}{rcl} \operatorname{Hom}(U,V) &:= & \{\operatorname{linear\ maps}\ U \to V\} \\ & \operatorname{End} V &:= & \operatorname{Hom}(V,V), & \operatorname{the\ algebra\ of\ linear\ maps}\ V \to V \\ & \operatorname{Aut} V &:= & \{f \in \operatorname{End} V | f \text{ is bijective}\} \\ & \operatorname{Aut}_n F &:= & \operatorname{Aut} F^n \\ & (M_n,\times) \equiv M_n \equiv M_{n,n}(F) &:= & \operatorname{the\ algebra\ of\ } n \times n \text{ matrices} \\ & & & \operatorname{with\ the\ usual\ matrix\ product} \\ & I &\equiv & I_n := [e_1,..,e_n], & \operatorname{the\ identity\ matrix\ in\ } M_n \end{array}$

We usually denote composition of maps as $fg \equiv f \circ g$. These objects will be introduced and studied in class during the first two weeks.

LECTURER: BONG H. LIAN

1. Statements of Problems in Project 1

Problem 1.1.

(a) Describe all possible solutions to the matrix equation system

$$x_1^2 = x_1, \ x_2^2 = x_2, \ x_1 x_2 = x_2 x_1 = 0$$

in two variables in M_2 , up to conjugation by Aut_2 . (b) Describe all those conjugation classes that satisfy the additional equation

 $x_1 + x_2 = I_2.$

(c) Describe all possible two-sided ideals of M_2 .

We saw in class that the algebra M_n itself is an M_n -space on which M_n acts by left multiplication. We also saw that an *F*-subspace $W \subset M_n$ is an M_n -subspace iff *W* is a left ideal of M_n .

Problem 1.2.

(a) Describe all possible left ideals I of M_2 . Which ones of them are isomorphic to each other?

(b) Classify all minimal M_2 -spaces V up to isomorphisms.

(c) Classify all M_2 -spaces V up to isomorphisms.

Problem 1.3. Generalize both Problems 1.1 and 1.2 to M_n -spaces for all n.

2. Statements of Problems in Project 2

Assume $F = \mathbb{C}$ in this project. In class, we will discuss the notion of matrix valued functions, and study the example $\exp(X)$.

Problem 2.1. Let $A \in M_2$, be a diagonal matrix. Solve the matrix equation

 $\exp(X) = A.$

Problem 2.2. Let $A \in M_2$, be an upper triangular matrix. Solve the matrix equation

 $\exp(X) = A.$

Problem 2.3. Let $A \in M_2$, be an arbitrary matrix. Solve the matrix equation

 $\exp(X) = A.$

Problem 2.4. How would you generalize these problems to M_k .